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Abstract

The Maltsev product V ◦W of varieties V and W of the same type, is the class of all alge-

bras A that have a congruence θ such that the quotient A/θ belongs toW and every congruence

class of θ which is a subalgebra of A belongs to V . The class V ◦W may not be a variety. We

identify a class of varieties that behave well as the second factor of the Maltsev product. We call

them term idempotent varieties. They include in particular all idempotent varieties. The main

result of this work is a sufficient condition for the Maltsev product V ◦W of a variety V and a

term idempotent variety W to be a variety. We use this sufficient condition to derive a number

of other sufficient conditions. One of the most interesting of these results states that the Maltsev

product V ◦W of any congruence permutable variety V and any term idempotent variety W is

a variety. We provide an equational base for the variety generated by a Maltsev product of two

varieties.

Keywords

Maltsev product, variety, term idempotent variety, equational base.
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Streszczenie

Produkt Malceva V ◦W rozmaitości V i W tego samego typu to klasa złożona ze wszys-

tkich algebr A, które posiadają kongruencję θ, taką że iloraz A/θ należy do W , a każda klasa

abstrakcji, która jest podalgebrą A, należy do V . Klasa V ◦W może nie być rozmaitością. Zi-

dentyfikowaliśmy klasę rozmaitości, które zachowują się dobrze jako drugi czynnik produktu

Malceva. Nazwaliśmy je rozmaitościami termowo idempotentnymi. Do tej klasy należą w

szczególności wszystkie rozmaitości idempotentne. Głównym wynikiem tej pracy jest warunek

dostateczny na to, aby produkt Malceva V ◦W rozmaitości V oraz rozmaitości termowo idem-

potentnej W był rozmaitością. Z tego warunku dostatecznego wyprowadziliśmy serię pochod-

nych warunków dostatecznych. Jeden z najciekawszych mówi, że dla dowolnej rozmaitości V ,

która ma przemienne kongruencje, oraz dowolnej rozmaitości termowo idempotentnejW , pro-

dukt Malceva V ◦W jest rozmaitością. Podaliśmy również bazę równościową dla rozmaitości

generowanej przez produkt Malceva dwóch rozmaitości.

Słowa kluczowe

produkt Malceva, rozmaitość, rozmaitość termowo idempotentna, baza równościowa.
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1 Introduction

For a class K of algebras, the Maltsev K–product C ◦K D of classes C,D ⊆ K, is the class that

consists of all algebras A ∈ K which have a congruence θ, such that the quotient A/θ belongs

toD and each congruence class of θ which is a subalgebra of A that belongs to K, belongs to C,

i.e.

C ◦K D = {A ∈ K | ∃θ A/θ ∈ D, ∀a ∈ A (a/θ ≤ A, a/θ ∈ K ⇒ a/θ ∈ C)}. (1.1)

LetA be the class of all algebras of a given type. The MaltsevA–product C ◦A D will be called

the absolute Maltsev product or simply the Maltsev product and will be denoted by C ◦ D. A

variety is a class of algebras which is closed under subalgebras, arbitrary direct products, and

homomorphic images. Maltsev K–products were introduced by Maltsev [15] in order to extend

the product of varieties of groups defined by Neumann [17] to arbitrary classes of algebras. If

G is the variety of groups, then for any subvarieties V ,W ⊆ G, the Maltsev G–product V ◦G W

coincides with the Neumann product of V andW .

Maltsev K–products offer a context for different algebraic constructions such as group ex-

tensions, semilattices of semigroups (see [12]), or semilattice sums of algebras (see [20]). For

any classes C andD of groups, theMaltsevG–product C ◦G D consists of all extensions of groups

in C by groups in D. If Sg is the variety of semigroups and S is the variety of semilattices, then

for any class C of semigroups, the Maltsev Sg–product C ◦Sg S consists of all semilattices of

C–semigroups. If a type Ω obeys certain mild conditions, then there exists a unique variety SΩ

of the type Ω which is equivalent to the variety of semilattices. For any class C of algebras of

such a type, the Maltsev product C ◦ SΩ consists of all semilattice sums of algebras in C.

Maltsev K–products are applied to describe the structure of classes of algebras. E.g. let B

be the variety of bands (idempotent semigroups) and Rb be the variety of rectangular bands

(bands that satisfy the identity (x · y) · z = x · z). By a theorem of Clifford and McLean

[12, Thm. 3.1], every band is a semilattice of rectangular bands, so B can be decomposed as the

MaltsevB–productRb ◦B S . Neumann [17] proved that every variety of groups can be uniquely
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decomposed as a Maltsev G–product of indecomposable varieties. Analogous or similar results

have been obtained e.g. for varieties of Brouwerian semilattices by Köhler [14], varieties of

generalized interior algebras by Blok and Köhler [4], and varieties of lattices by Grätzer and

Kelly [9].

A prevariety is a class of algebras which is closed under subalgebras, arbitrary direct prod-

ucts, and isomorphic images (see [21, Def. 1.5.11]). A quasivariety is a prevariety which is

additionally closed under directed colimits (see [21, p. 158]). Every variety is a quasivariety.

In the basic paper [15], Maltsev investigated sufficient conditions for Maltsev K–products of

prevarieties, quasivarieties, and varieties to be prevarieties, quasivarieties, and varieties respec-

tively.

Theorem 1.1. [15, Cor. 5] Let P be a prevariety. Every Maltsev P–product of prevarieties is a

prevariety.

Theorem 1.2. [15, Cor. 5] LetQ be a quasivariety. If the type ofQ is finite, then every Maltsev

Q–product of quasivarieties is a quasivariety.

A variety V is congruence permutable if for any algebraA ∈ V and any pair of congruences

θ and ψ of A, one has θ ◦ ψ = ψ ◦ θ. A variety V is polarized if every nonempty algebra of V

contains exactly one idempotent element.

Theorem 1.3. [15, Thm. 7] Let U be a variety. If U is congruence permutable and polarized,

then every Maltsev U–product of varieties is a variety.

Iskander [13] gave a sufficient condition for a Maltsev U–product of varieties to be a va-

riety, which is weaker than the condition presented in Theorem 1.3. A variety U is weakly

congruence permutable if every nonempty algebra of U contains an idempotent element and

there exist terms p(x, y, z) and t(x), such that U satisfies the identities p(t(x), y, y) = t(x) and

p(t(x), t(x), y) = y.

Theorem 1.4. [13, Thm. 4.11] Let U be a variety. If U is weakly congruence permutable, then

every Maltsev U–product of varieties is a variety.
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For any weakly congruence permutable variety U and any subvarieties V ,W ⊆ U , Iskander

gave an equational base relative to U for the variety V ◦U W .

Some authors investigated sufficient conditions for a Maltsev U–product of varieties to be

a variety for specific varieties U . Grätzer and Kelly [10] considered Maltsev L–products for

the variety L of all lattices. They showed that if a variety of lattices V is closed under a certain

construction called gluing, then the Maltsev L–product V ◦L D is a variety, where D is the

variety of distributive lattices.

The sufficient condition of Iskander cannot be applied to the case of the absolute Maltsev

product of varieties, because the variety of all algebras of a given type is not weakly congruence

permutable. Bergman [1] gave a sufficient condition that applies to this case.

Theorem 1.5. [1, Cor. 2.3] Let V andW be idempotent varieties. If the join V ∨W is congru-

ence permutable, then the Maltsev product V ◦W is a variety.

The focus of this work are sufficient conditions for the absolute Maltsev product V ◦W of

varieties V andW to be a variety. We obtain a Maltsev style sufficient condition which requires

the existence of certain terms such that V andW satisfy certain identities involving these terms.

We then apply this general sufficient condition to derive a number of other sufficient conditions.

One of these sufficient conditions extends Theorem 1.5 to the case when V ∨W is a congruence

3–permutable variety (i.e. for every pair of congruences θ and ψ of an algebra A ∈ V ∨W , one

has θ ◦ ψ ◦ θ = ψ ◦ θ ◦ ψ). We provide an equational base for V ◦W in case when it is a variety.

More generally, for varieties V ,W ⊆ U , we provide an equational base relative to U for the

variety generated by V ◦U W . In order to achieve the results of this work, we define the notions

of a term idempotent, a term idempotent identity, and a term idempotent variety. We develop a

theory of these objects.

Chapter 2 describes the preliminary notions and theorems of universal algebra which we use

throughout this work. In Chapter 3 we define a special kind of terms for a given variety V which

we call term idempotents of V . These are the terms t such that in any algebra A ∈ V , all values

of the corresponding term operation tA are idempotent elements ofA. The name is motivated by
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the fact that a term t is a term idempotent of a variety V if and only if (the equivalence class of) t

is an idempotent element of the free algebra of V over countably infinitely many generators. An

example of a term idempotent is the term x · x−1 in varieties of groups. Unary term idempotents

were already introduced by Iskander [13] under the name of unit terms. However the results of

this work demonstrate the utility of considering term idempotents of arbitrary arities. In the study

of Maltsev products an important role is played by congruence classes which are subalgebras,

as the definition (1.1) suggests. Term idempotents can be used to keep track of such congruence

classes. We describe the properties of term idempotents.

In Chapter 4, we apply term idempotents to construct for any varieties V ,W ⊆ U , a set of

identities that defines relative to U the variety generated by the prevariety V ◦U W . In parti-

cular this yields an equational base for the variety generated by the Maltsev product V ◦W of

any varieties V and W of the same type. Both sides of every identity in this equational base

are term idempotents of W . This motivates the following definition. If an identity u = v is

true in a variety V and both u and v are term idempotents of V , then we will call u = v a term

idempotent identity of V . Identities of this kind are examined in Chapter 5. In Chapter 6 we use

term idempotent identities to define term idempotent varieties. These are varieties V such that

every nontrivial identity true in V is a term idempotent identity of V . We present a number of

examples of term idempotent varieties. In particular every variety which is idempotent is also

term idempotent. We investigate the properties of individual term idempotent varieties and of

the class of all such varieties of a given type.

Chapter 7 is concerned with replica congruences. For a variety V and an algebra A of the

same type, the V–replica congruence of A is the smallest congruence of A such that the corre-

sponding quotient belongs to V . The importance of replica congruences in the theory of Maltsev

products of varieties comes from the fact that in order to check whether an algebra belongs to

the Maltsev product V ◦W of varieties V andW , the only congruence θ that one needs to con-

sider in the definition (1.1) is theW–replica congruence. We provide an explicit construction of

the replica congruence. We exploit this construction to obtain several results about W–replica
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congruences of algebras in the variety generated by V ◦W . We also apply it to prove a charac-

terization of term idempotent varieties as varietiesW such that for every algebra A, all congru-

ence classes of the W–replica congruence of A which are not subalgebras of A are singletons.

Compare this to idempotent varietiesW for which all congruence classes of anyW–replica con-

gruence are subalgebras. This property of term idempotent varieties ensures that they behave

almost as well as idempotent varieties in the role of the second factor of the Maltsev product.

In Chapter 8, we prove the main result of this work – a sufficient condition for the Maltsev

product V ◦W of a variety V and a term idempotent varietyW to be a variety. This result is the

culmination of research partly published in [3], [18], and [19]. In this work we employ a new

proof strategy that allows us to obtain a sufficient condition which is considerably weaker than

the one presented in [19]. In Chapter 9, we obtain other sufficient conditions as corollaries of

the main theorem and we provide examples of their application. One of the most interesting of

these results states that the Maltsev product V ◦W of any congruence permutable variety V and

any term idempotent varietyW is a variety.
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2 Preliminaries

The books [2], [5], [16], and [21] will be used as references for basic notions of universal al-

gebra. A similarity type, or briefly a type, is a set Ω of symbols of basic operations together

with an assignment of a natural number called arity to each symbol f ∈ Ω. When we consider

different algebras, varieties, or terms in the same context, then unless stated otherwise, we im-

plicitly assume that they are of the same type. In particular we only consider Maltsev products

of varieties of the same type. We denote an algebra and its universe by the same symbol.

We denote by TΩ(X) the set of terms of a typeΩ over a setX of variables. We write T (X) if

there is no risk of confusion. We denote finite (indexed) sets {x1, . . . , xn} of (pairwise distinct)

variables by x. We denote the set of variables that occur in a term t by var(t). If var(t) has n

elements, then we say that t is n–ary. If for a term t we write t(x), it means that var(t) ⊆ x.

We will use the first infinite ordinal ω as the standard countably infinite set of variables. Unless

stated otherwise, all sets x of variables that we consider are subsets of ω and all terms that we

consider belong to T (ω).

We denote finite (indexed) sets {a1, . . . , an} of elements of a given algebra by a. We denote

the set of substitutions a of elements of an algebra A for variables of x by Ax. A term t and a

finite set x ⊇ var(t) of variables determine the term operation tA(x) : Ax → A of an algebraA.

We denote the value of a term operation tA(x) on elements a ∈ Ax by t(a).

An element a of an algebra A is an idempotent element or an idempotent of A if for every

f ∈ Ω, one has f(a, . . . , a) = a. Equivalently, a is an idempotent of A if {a} is a subalgebra

of A. An algebra A is idempotent if all elements of A are idempotents. Note that for a type Ω

that contains symbols of constants (nullary basic operations), if an algebra A of the type Ω has

an idempotent, then this idempotent is unique and it coincides with every constant of A.

2.1 Varieties and identities

We will say that a class C of algebras is of a type Ω if all algebras in C are of the type Ω. We

will assume that all classes of algebras which we consider in this work consist of algebras of
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the same type. A prevariety is a class of algebras which is closed under subalgebras, arbitrary

direct products, and isomorphic images (see [21, Def. 1.5.11]). A variety is a prevariety which

is closed under homomorphic images (see [5, Def. 9.3]). Algebras that belong to a variety V are

called V–algebras. A variety V is idempotent if every V–algebra is idempotent. The smallest

variety that contains a class C of algebras is called the variety generated by C. It follows from

Tarski’s theorem (see [5, Thm. 9.5]) that the variety generated by a prevariety P coincides with

the class H(P) of all homomorphic images of algebras in P .

Varieties of a given type Ω form a complete lattice with respect to the class inclusion. For

varieties Vi, i ∈ I , the meet
∧
i∈I Vi is the intersection

⋂
i∈I Vi and the join

∨
i∈I Vi is the variety

generated by the union
⋃
i∈I Vi. The maximum variety is the variety AΩ of all algebras of the

typeΩ. The minimum variety is the trivial variety TΩ that consists of all single-element algebras

of the typeΩ and of the empty algebra in case whenΩ has no symbols of constants. Wewill write

A and T instead ofAΩ and TΩ if there is no risk of confusion. Lattices of varieties are discussed

in [2, Sec. 4.5].

An identity or an equation is a formula of the form u = v, where u and v are terms. The

terms u and v are called the left-hand side and the right-hand side of the identity respectively.

An algebraA satisfies an identity u(x) = v(x) if u(a) = v(a) for all a ∈ Ax. If all V–algebras

satisfy an identity σ, then we say that σ is true in V or that V satisfies σ and we write V |= σ.

For a set Σ of identities, we write V |= Σ if V |= σ for all σ ∈ Σ. An identity is trivial if it is

of the form t = t for some term t; otherwise it is nontrivial. Every variety satisfies all trivial

identities. If V |= u = v, then we say that terms u and v are equivalent in V or V-equivalent.

A class C of algebras is defined by a set Σ of identities if for every algebra A,

A ∈ C ⇐⇒ A |= Σ.

Theorem 2.1. [5, Thm. 11.9] A class of algebras is a variety iff it is defined by a set of identities.

A set of identities that defines a variety V is called an equational base for V . A subvariety
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W of a variety V is defined relative to V by a set Σ of identities if for every V–algebra A,

A ∈ W ⇐⇒ A |= Σ.

In this case for any equational base ΣV of V , the union Σ ∪ ΣV is an equational base forW .

A magma is an algebra with a single basic operation that is binary. Below, we introduce

several varieties of magmas which we will frequently encounter throughout the text (see [12]):

(1) Sg of all semigroups defined by the associative law (x · y) · z = x · (y · z),

(2) B of all bands defined relative to Sg by the idempotent law x · x = x,

(3) S of all semilattices defined relative to B by the commutative law x · y = y · x,

(4) Rb of all rectangular bands defined relative to B by the identity (x · y) · z = x · z,

(5) Lz of all left-zero semigroups defined relative to Sg (or to B) by the identity x · y = x,

(6) Rz of all right-zero semigroups defined relative to Sg (or to B) by the identity x · y = y.

An identity σ is a consequence of a set Σ of identities if whenever an algebra satisfies the

identities in Σ, it also satisfies σ. One may infer the consequences of a given set of identities

using the following rules of inference of equational logic (see [5, Sec. 14]).

(e1) Infer p = p, for any term p.

(e2) From u = v infer v = u.

(e3) From u = v and v = w infer u = w.

(e4) From u(x1, . . . , xn) = v(x1, . . . , xn) infer u(t1, . . . , tn) = v(t1, . . . , tn),

for any terms t1, . . . , tn.

(e5) From u = v infer t(u,x) = t(v,x), for any term t(y,x).

Theorem 2.2. [5, Thm. 14.19] An identity σ is a consequence of a set Σ of identities iff σ can

be inferred from the identities in Σ using the rules of inference of equational logic.

The set Id(V) of all identities true in a variety V is called the equational theory of V . A

set of identities is called an equational theory if it is the equational theory of some variety (see

[5, Def. 14.9]). A set of identities is an equational theory iff it contains all of its consequences.

A set Σ ⊆ Id(V) is an equational base for a variety V iff all identities in Id(V) are consequences
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of the identities in Σ, or equivalently if the smallest equational theory that contains Σ is Id(V).

We say that a term t(x1, . . . , xn) is constant in a variety V if for every algebra A ∈ V , the

term operation tA(x1, . . . , xn) has a constant value, or equivalently if

V |= t(x1, . . . , xn) = t(y1, . . . , yn).

Note that every nullary term is constant.

Lemma 2.3. A term that is V–equivalent to a constant term of a variety V is also a constant

term of V .

Proof. The term operations that correspond to V–equivalent terms have the same values in al-

gebras A ∈ V , so either both have a constant value or both do not.

Let V and V ′ be varieties of types Ω and Ω′ respectively. Let φ : Ω → TΩ′(ω) be a function

that assigns to a symbol f(x1, . . . , xn) ∈ Ω a term φ(f)(x1, . . . , xn) ∈ TΩ′(ω). Then there is

a corresponding class function φ∗ : AΩ′ → AΩ that assigns to an algebra A ∈ AΩ′ an algebra

φ∗(A) ∈ AΩ that has the same universe as A, and is such that for every n–ary symbol f ∈ Ω,

the basic operation f φ∗(A)(x1, . . . , xn) is defined as the term operation φ(f)A(x1, . . . , xn). For

a symbol c ∈ Ω of a constant, φ(c) is allowed to be a unary term which is constant in V ′. In this

case the constant cφ∗(A) is defined as the constant value of φ(c)A(x). If φ∗(V ′) ⊆ V , then φ is

called an interpretation of V in V ′.

Varieties V and V ′ are equivalent if there exist interpretations φ of V in V ′ and ψ of V ′ in V ,

such thatφ∗(ψ∗(A)) = A for allA ∈ V andψ∗(φ∗(B)) = B for allB ∈ V ′ (see [16, Sec. 4.12]).

For a given variety we will sometimes want to construct an equivalent variety of a different type.

We will use combinations of the following three equivalences.

Example 2.4. Let V be a variety of a type Ω. For an n–ary f ∈ Ω, let Ω′ = Ω ∪ {f ′}, where f ′

is also n–ary. Define a variety V ′ of the type Ω′ by the identities that define V and the identity

f ′(x1, . . . , xn) = f(x1, . . . , xn). Then varieties V and V ′ are equivalent, because f ′ can be inter-

preted in V as f .
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Example 2.5. Let V be a variety of a type Ω. Let Ω′ = Ω ∪ {u}, where u is unary. Define a

variety V ′ of the type Ω′ by the identities that define V and the identity u(x) = x. Then varieties

V and V ′ are equivalent, because u can be interpreted in V as the term x.

Example 2.6. Let V be a variety of a type Ω that contains a symbol of a constant c. Let the

type Ω′ be the same as the type Ω except with c replaced by a unary symbol c(x). Define a

variety V ′ of the type Ω′ by the identities that define V except with c replaced by c(x), and by

the identity c(x) = c(y). Then varieties V and V ′ are equivalent, because c may be interpreted

as c(x) and vice versa.

An identity u = v is regular if var(u) = var(v); otherwise it is irregular. An irregular

identity is strongly irregular if it is of the form t(x, y) = x for some binary term t(x, y). E.g.

the associative law is regular and the absorption laws are strongly irregular. A variety is regular

if it satisfies only regular identities; otherwise it is irregular (see [21, p. 48]). Every irregular

variety satisfies some irregular identity of the form t(x, y) = u(x). An irregular variety is

strongly irregular if it satisfies some strongly irregular identity (see [21, p. 184]).

For a given type Ω, let SΩ be the variety defined by all regular identities of the type Ω. A

type is called plural if it has no symbols of constants and it has a symbol of a basic operation of

arity at least two (see [21, p. 11]). IfΩ is a plural type, then SΩ is the unique variety of the typeΩ

that is equivalent to the variety S of all semilattices. Algebras in SΩ are called Ω–semilattices

(see [21, Ex. 1.5.4]). We will denote SΩ simply by S . The variety S is idempotent and regular.

2.2 Congruences

A congruence θ of an algebraA is an equivalence relation onA that preserves operations, i.e. for

every n–ary f ∈ Ω, if (a1, b1), . . . , (an, bn) ∈ θ, then (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ (see [5,

Def. 5.1]). Equivalence classes of a congruence are called congruence classes. We denote the

congruence class of an element a ∈ A by a/θ. The quotient A/θ is an algebra whose universe

is the set of congruence classes of θ and in which the value of an n–ary basic operation f on

congruence classes a1/θ, . . . , an/θ is the congruence class f(a1, . . . , an)/θ. A homomorphism
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nat(θ) : A→ A/θ which maps an element a ∈ A to its congruence class a/θ is called the natural

homomorphism.

Congruences of an algebra A form a complete lattice. The meet and the join of a family of

congruences θi, i ∈ I , are given by

∧
i∈I

θi =
⋂
i∈I

θi,
∨
i∈I

θi =
⋃
n≥1

⋃
i1,...,in∈I

θi1 ◦ θi2 ◦ · · · ◦ θin .

The minimum and maximum congruences are

∆A = {(a, a) | a ∈ A}, ∇A = A× A.

For a homomorphism h :A→ B, we denote by kerh the congruence of A defined by

(a, b) ∈ kerh ⇐⇒ h(a) = h(b).

Theorem 2.7. [5, Thm. 6.12] If h :A → B is a surjective homomorphism, then there exists an

isomorphism φ :A/ kerh→ B given by

φ(a/ kerh) = h(a), ∀a ∈ A.

For congruences θ ⊆ ψ of an algebra A, we denote by ψ/θ the congruence of the quotient

algebra A/θ defined by

(a/θ, b/θ) ∈ ψ/θ ⇐⇒ (a, b) ∈ ψ.

Theorem 2.8. [5, Thm. 6.15] Let θ and ψ be congruences of an algebraA. If θ ⊆ ψ, then there

exists an isomorphism φ : (A/θ)/(ψ/θ) → A/ψ given by

φ
(
(a/θ)/(ψ/θ)

)
= a/ψ, ∀a ∈ A.

For elements a ≤ b of a lattice L, let [a, b] denote the interval {x ∈ L | a ≤ x ≤ b}. It is a

sublattice of L.

Theorem 2.9. [5, Thm. 6.20] Let A be an algebra and θ be a congruence of A. There is an

isomorphism φ between the interval [θ,∇A] and the lattice of congruences of A/θ given by

φ(ψ) = ψ/θ, ∀ψ ⊇ θ.
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For congruences θ ⊆ ψ of an algebra A, if C is a congruence class of ψ/θ, then

⋃
C = {a ∈ A | a/θ ∈ C}

is a congruence class of ψ. The assignment C 7→
⋃
C coincides with the isomorphism φ of

Theorem 2.8.

Lemma 2.10. Let θ ⊆ ψ be congruences of an algebra A and C be a congruence class of ψ/θ.

Then C is a subalgebra of A/θ iff
⋃
C is a subalgebra of A.

Proof. Let f ∈ Ω and a1/θ, . . . , an/θ ∈ C. Then

f(a1/θ, . . . , an/θ) ∈ C ⇐⇒ f(a1, . . . , an)/θ ∈ C ⇐⇒ f(a1, . . . , an) ∈
⋃

C.

We say that congruences θ and ψ permute if θ ◦ ψ = ψ ◦ θ. If all pairs of congruences

of an algebra A permute, then we say that A is congruence permutable. A variety V is called

congruence permutable if all algebras in V are congruence permutable. Examples of congruence

permutable varieties include varieties of groups, quasigroups, rings, and modules. A ternary

term f(x, y, z) is called aMaltsev term for a variety V if V satisfies the identities f(x, y, y) = x

and f(x, x, y) = y.

Theorem 2.11. [5, Thm. 12.2] A variety is congruence permutable iff it has a Maltsev term.

For congruences θ and ψ of an algebra A and n ≥ 0, let

θ ◦n ψ =


∆A, n = 0,

(θ ◦n−1 ψ) ◦ θ, n is odd,
(θ ◦n−1 ψ) ◦ ψ, n is even.

We say that congruences θ and ψ n–permute if θ ◦n ψ = ψ ◦n θ. If all pairs of congruences

of an algebra A n–permute, then we say that A is congruence n–permutable. A variety V is

called congruence n–permutable if all algebras in V are congruence n–permutable. Note that

congruence 2–permutability is just congruence permutability.

Theorem 2.12. [11, Thm. 2] Let n ≥ 2. A variety V is congruence n–permutable iff there are

terms p1(x, y, z), . . . , pn−1(x, y, z) such that V satisfies the following identities
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(1) x = p1(x, y, y),

(2) pi(x, x, y) = pi+1(x, y, y), for all 1 ≤ i ≤ n− 2,

(3) pn−1(x, x, y) = y.

The following lemma characterizes the congruence classes which are subalgebras.

Lemma 2.13. Let θ be a congruence of an algebra A. A congruence class a/θ is a subalgebra

of A iff a/θ is an idempotent of A/θ.

Proof. Assume that a congruence class a/θ is a subalgebra of A. Then f(a, . . . , a) ∈ a/θ for

every f ∈ Ω. Thus

f(a/θ, . . . , a/θ) = f(a, . . . , a)/θ = a/θ

for every f ∈ Ω. Hence a/θ is an idempotent of A/θ.

Now assume that a/θ is an idempotent of A/θ. Then for every n–ary f ∈ Ω and every

b1, . . . , bn ∈ a/θ one has

f(b1, . . . , bn)/θ = f(b1/θ, . . . , bn/θ) = f(a/θ, . . . , a/θ) = a/θ.

Hence f(b1, . . . , bn) ∈ a/θ, and so a/θ is a subalgebra of A.

2.3 Replica congruences and free algebras

Let V be a variety and A be an algebra. A congruence θ of A such that A/θ ∈ V is called a

V–congruence ofA. In every algebraA there exists the minimum V–congruence ofA, which is

the intersection of all V–congruences of A. It is called the V–replica congruence of A. We will

denote it by ϱVA. The quotient A/ϱVA is called the replica of A in V . For varieties V ⊆ U , one

has the inclusion ϱU
A ⊆ ϱVA for any algebra A. See [21, Sec. 3.3] for the discussion of replicas

and replica congruences.

Lemma 2.14. Let h : A→ B be a homomorphism. If (a, b) ∈ ϱVA, then (h(a), h(b)) ∈ ϱVB.

Proof. There exists a unique homomorphism h′ : A/ϱVA → B/ϱVB such that the following dia-
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gram is commutative (see [21, diagram on p. 124]):

A B

A/ϱVA B/ϱVB.

h

nat(ϱVA) nat(ϱVB)

h′

Suppose (a, b) ∈ ϱVA. Since a and b have the same image under nat(ϱVA), they also have the same

image under h′ ◦ nat(ϱVA). Thus a and b have the same image under nat(ϱVB) ◦ h. It follows that

h(a) and h(b) have the same image under nat(ϱVB). Hence (h(a), h(b)) ∈ ϱVB.

Lemma 2.15. Let Vi, i ∈ I , be varieties, W be the meet
∧
i∈I Vi, and A be an algebra. Then

ϱWA =
∨
i∈I

ϱVi
A .

Proof. Let θ =
∨
i∈I ϱ

Vi
A . By Theorem 2.8, for every i ∈ I ,

A/θ ∼= (A/ϱVi
A )/(θ/ϱVi

A ).

Hence A/θ is a quotient of a Vi–algebra for every i ∈ I , so it lies in the intersectionW . Thus θ

is aW–congruence of A.

Letψ be aW–congruence ofA. Then for every i ∈ I , ψ is also aVi–congruence, so ϱVi
A ⊆ ψ.

Hence θ ⊆ ψ, and thus θ is the minimumW–congruence of A.

Lemma 2.16. Let V be a variety, A be an algebra, and θ be a congruence of A. Then

ϱVA/θ = (θ ∨ϱVA)/θ.

Proof. By Theorem 2.8,

(A/θ)/((θ ∨ϱVA)/θ) ∼= A/(θ ∨ϱVA) ∼= (A/ϱVA)/((θ ∨ϱVA)/ϱVA).

The rightmost algebra is a quotient of the V–replica A/ϱVA, so it belongs to V . Hence (θ∨ϱVA)/θ

is a V–congruence.

By Theorem 2.9, every congruence of A/θ is of the form ψ/θ for some congruence ψ ⊇ θ

of A. Let ψ/θ be a V–congruence of A/θ. Then, by Theorem 2.8,

A/ψ ∼= (A/θ)/(ψ/θ) ∈ V .

25



Thus ψ is a V–congruence of A. Hence ϱVA ⊆ ψ, which entails θ ∨ϱVA ⊆ ψ. Consequently, one

has the inclusion (θ ∨ϱVA)/θ ⊆ ψ/θ, so (θ ∨ϱVA)/θ is the minimum V–congruence of A/θ.

The free algebra of a variety V over a setX of generators is the (unique up to isomorphism)

algebra FV(X) for which there exists an injection φ : X → FV(X) such that for every algebra

A ∈ V , any function f : X → A extends uniquely to a homomorphism h : FV(X) → A, i.e. one

has f = h ◦ φ (see [21, Def. 3.3.4]).

The following two theorems follow from [5, Cor. 10.11] and [5, Cor. 11.10] respectively.

Theorem 2.17. Every algebra in a variety V is a homomorphic image of a free algebra of V .

Theorem 2.18. Let P be a prevariety. All free algebras of the variety H(P) belong to P .

Corollary 2.19. A variety contains all of its free algebras.

Corollary 2.20. If all free algebras of a variety V belong to a prevariety P , then V ⊆ H(P).

Proof. By Theorem 2.17, V = H({FV(X) | X is a set}) ⊆ H(P).

A term algebra over a set X of variables is an algebra whose universe is the set T (X) of

terms and in which the value of an n–ary basic operation f on terms t1, . . . , tn is the composite

term f(t1, . . . , tn) (see [5, Def. 10.4]).

The following theorem follows from [5, Thm. 10.10].

Theorem 2.21. The free algebra of a variety V over a set X of generators is given by

FV(X) = T (X)/ϱVT (X).

It follows from [5, Thm. 11.4] that the V–replica congruence of the term algebra T (X) is

given by

(u, v) ∈ ϱVT (X) ⇐⇒ V |= u = v. (2.1)

Elements of FV(X) are thus equivalence classes that consist of V–equivalent terms. For a term

t ∈ T (X), we will usually denote its equivalence class t/ϱVT (X) by [ t ].
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Corollary 2.22. LetV ⊆ U be varieties andF be the free U–algebra over a setX of generators.

Then ϱVF = ϱVT (X)/ϱ
U
T (X).

Proof. Since ϱU
T (X) ⊆ ϱVT (X), the join ϱU

T (X) ∨ ϱVT (X) coincides with ϱ
V
T (X), so the conclusion

follows from Lemma 2.16.

Corollary 2.23. Let V ⊆ U be varieties, F be the free U–algebra over a set X of generators,

and u, v ∈ T (X). Then V |= u = v iff ([u ], [v ]) ∈ ϱVF .

Proof. Let T be the term algebra T (X). By Corollary 2.22, ϱVF = ϱVT/ϱ
U
T . Hence

V |= u = v ⇐⇒ (u, v) ∈ ϱVT ⇐⇒ (u/ϱU
T , v/ϱ

U
T ) ∈ ϱVT/ϱ

U
T ⇐⇒ ([u ], [v ]) ∈ ϱVF ,

where the first equivalence holds by (2.1).

Corollary 2.24. Let Vi, i ∈ I , be varieties. If
∧
i∈I Vi |= u(x) = v(x), then there exist terms

u = t1(x), t2(x), . . . , tn(x) = v such that for each 1 ≤ k < n, there is some i ∈ I such that

Vi |= tk = tk+1.

Proof. LetW =
∧
i∈I Vi. By (2.1), (u, v) ∈ ϱWT (x). By Lemma 2.15, ϱWT (x) =

∨
i∈I ϱ

Vi

T (x). Hence

there are t1, . . . , tn ∈ T (x) such that t1 = u, tn = v, and for each 1 ≤ k < n, (tk, tk+1) ∈ ϱVi

T (x)

for some i ∈ I . The conclusion follows by (2.1).

2.4 Maltsev products

The definition of the Maltsev product of varieties V andW of the same type is slightly simpler

than the general definition,

V ◦W = {A | ∃θ A/θ ∈ W , ∀a ∈ A (a/θ ≤ A ⇒ a/θ ∈ V)}. (2.2)

Let us mention some of the basic properties of the Maltsev product of varieties (see [15]).

For any varieties V , V ′, V ′′,W ,W ′, and U of the same type, the following conditions hold:

(1) V ◦W is a prevariety,

(2) V ,W ⊆ V ◦W ,
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(3) if V ⊆ V ′ andW ⊆ W ′, then V ◦W ⊆ V ′ ◦W ′,

(4) V ◦ (V ′ ◦ V ′′) ⊆ (V ◦ V ′) ◦ V ′′,

(5) V ◦ T = V ,

(6) A ◦ V = V ◦ A = A,

(7) if V ,W ⊆ U , then V ◦U W = (V ◦W) ∩ U .

The following theorem shows that in order to see whether an algebraA belongs to a Maltsev

product V ◦W , we only need to consider theW–replica congruence of A as a candidate for the

congruence θ in the definition (2.2). It follows from [15, Cor. 4].

Theorem 2.25. Let V and W be varieties. Then

V ◦W = {A | ∀a ∈ A (a/ϱWA ≤ A ⇒ a/ϱWA ∈ V)}.

We will make use of the following lemma.

Lemma 2.26. Let V and W be varieties, A ∈ V ◦W , and θ be a congruence of A. If θ ⊆ ϱWA ,

then A/θ ∈ V ◦W .

Proof. By Lemma 2.16, ϱWA /θ is the W–replica congruence of A/θ. Let C be a congruence

class of ϱWA /θ which is a subalgebra of A/θ. Then by Lemma 2.10, D =
⋃
C is a congruence

class of ϱWA which is a subalgebra of A. By Theorem 2.25, D ∈ V . Since C is the image of D

under the natural homomorphism nat(θ), one has C ∈ V . Hence A/θ ∈ V ◦W .
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3 Term idempotents

A term t will be called a term idempotent of a variety V (see [19]) if

V |= f(t, . . . , t) = t, ∀f ∈ Ω.

It follows that for a term idempotent t of V ,

V |= u(t, . . . , t) = t, ∀u ∈ T (ω).

The following proposition justifies the name.

Proposition 3.1. [19] A term t is a term idempotent of a variety V iff the equivalence class [ t ]

is an idempotent of the free algebra FV(ω).

Proof. Assume that t is a term idempotent of V . Then for any f ∈ Ω,

f([ t ], . . . , [ t ]) = [f(t, . . . , t)] = [ t ],

so [ t ] is an idempotent of FV(ω).

Now assume that [ t ] is an idempotent of FV(ω). Then for any f ∈ Ω,

[f(t, . . . , t)] = f([ t ], . . . , [ t ]) = [ t ],

so t is a term idempotent of V .

The usefulness of term idempotents comes from the following property.

Proposition 3.2. [19] A term t(x) is a term idempotent of a variety V iff for every A ∈ V and

a ∈ Ax, the value t(a) is an idempotent of A.

Proof. Let t(x1, . . . , xn) be a term idempotent of V and A ∈ V . If b = t(a1, . . . , an) for some

a1, . . . , an ∈ A, then for any f ∈ Ω,

f(b, . . . , b) = f(t(a1, . . . , an), . . . , t(a1, . . . , an)) = t(a1, . . . , an) = b.

Thus b is an idempotent of A.
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Assume that for every algebra A ∈ V and every a ∈ Ax, the value t(a) is an idempotent

of A. In the free algebra F = FV(ω), the equivalence class [ t ] is the value of the term oper-

ation tF (x1, . . . , xn) on arguments [x1 ], . . . , [xn ], so it is an idempotent of F . Therefore, by

Proposition 3.1, t is a term idempotent of V .

The motivating example of a term idempotent is the term x · x−1 in varieties of groups. An

example of a term idempotent such that the corresponding term operation in a given algebra

does not necessarily have a constant value is the term x · x−1 in varieties of inverse semigroups

(see [12, Ch. V]). If a variety V is idempotent, then every term is a term idempotent of V . On

the other hand a variety may have no term idempotents, e.g. no term is a term idempotent of Sg.

Note that a variety is idempotent iff x is its term idempotent.

If a variety V has term idempotents, then for any algebra A and any V–congruence θ of A,

one can characterize the congruence classes of θ which are subalgebras of A as follows.

Proposition 3.3. Let V be a variety, t(x) be a term idempotent of V , A be an algebra, and θ

be a V–congruence of A. A congruence class of θ is a subalgebra of A iff it contains t(a) for

some a ∈ Ax.

Proof. Let A be an algebra. If a/θ is a subalgebra of A, then it contains the value t(a, . . . , a).

Now assume that a/θ contains a value t(b1, . . . , bn). Then

a/θ = t(b1, . . . , bn)/θ = t(b1/θ, . . . , bn/θ).

Thus, by Proposition 3.2, a/θ is an idempotent of A/θ. Hence, by Lemma 2.13, a/θ is a subal-

gebra of A.

Corollary 3.4. If V is an idempotent variety, then for any algebra A, all congruence classes of

any V–congruence of A are subalgebras of A.

Proof. If V is an idempotent variety, then the term x is a term idempotent of V . The corre-

sponding term operation is the identity function which has every element of A as its value.
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Corollary 3.5. Let V be a variety that has term idempotents, A ∈ V , and θ be a congruence

of A. Then a congruence class of θ is a subalgebra of A iff it contains an idempotent.

Proof. Let t be any term idempotent of V . Since θ is a V–congruence and each value of tA(x)

is an idempotent, the conclusion follows from Proposition 3.3.

The existence of term idempotents in a variety V , the existence of congruence classes of V–

congruences which are subalgebras, and the existence of idempotents in V–algebras are closely

related. A part of the following result appears in a different form in [6, Thm. 9].

Proposition 3.6. Let V be a variety. The following conditions are equivalent.

(i) V has term idempotents.

(ii) Every V–algebra has idempotents.

(iii) For any algebra A, every V–congruence of A has a congruence class which is a subal-

gebra of A.

Proof. Assume (iii). Then for anyA ∈ V , the minimum congruence∆A has a congruence class

{a} which is a subalgebra. By definition, a is an idempotent of A, so (ii) holds. Assume (ii).

Then FV(ω) has an idempotent [ t ]. By Proposition 3.1, t is a term idempotent of V . Hence (i)

holds. By Proposition 3.3, (i) implies (iii).

Let TI(V) ⊆ T (ω) denote the set of term idempotents of a variety V .

Proposition 3.7. Let V be a variety of a type Ω. The set TI(V) has the following properties.

(1) If u ∈ TI(V) and V |= u = v, then v ∈ TI(V).

(2) If t(x1, . . . , xn) ∈ TI(V), then t(p1, . . . , pn) ∈ TI(V) for any terms p1, . . . , pn.

(3) If t1, . . . , tn ∈ TI(V) are pairwise V–equivalent, then p(t1, . . . , tn) ∈ TI(V) for any term

p(x1, . . . , xn). Furthermore, V |= p(t1, . . . , tn) = t1.

(4) If Ω contains a symbol of arity at least two and TI(V) contains a term of some positive

arity, then TI(V) contains terms of every positive arity.

(5) If TI(V) is nonempty, then it contains a nullary term or a unary term.
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Proof. (1): If V |= u = v, then [u ] = [v ] in FV(ω), so by Proposition 3.1, either both u and v

are term idempotents of V , or none of them is.

(2): For every f ∈ Ω, V |= f(t, . . . , t) = t. Thus for every f ∈ Ω, also

V |= f(t(p1, . . . , pn), . . . , t(p1, . . . , pn)) = t(p1, . . . , pn).

Hence t(p1, . . . , pn) is a term idempotent of V .

(3): The term p(t1, . . . , tn) is V–equivalent to p(t1, . . . , t1), which is V–equivalent to t1, so

by (1), p(t1, . . . , tn) is a term idempotent of V .

(4): Let n ≥ 1. Let t(x1, . . . , xk) be a term idempotent of a positive arity. In the typeΩ there

exist terms of any positive arity, so let p be an n–ary term. By (2), the n–ary term t(p, . . . , p) is

a term idempotent of V .

(5): Follows from (4).

If V ⊆ W , then TI(W) ⊆ TI(V). More generally, one has the following relationships.

Proposition 3.8. Let Vi, i ∈ I , be varieties. Then

(1) TI(
∨
i∈I Vi) =

⋂
i∈I TI(Vi),

(2)
⋃
i∈I TI(Vi) ⊆ TI(

∧
i∈I Vi).

Proof. Since Id(
∨
i∈I Vi) =

⋂
i∈I Id(Vi), identities f(u, . . . , u) = u, f ∈ Ω, are true in

∨
i∈I Vi

iff for every i ∈ I , they are true in Vi. Therefore (1) follows. For any j ∈ I ,
∧
i∈I Vi ⊆ Vj , so

TI(Vj) ⊆ TI(
∧
i∈I Vi). Therefore (2) follows.

The following counterexample shows that the inclusion of Proposition 3.8(2) cannot be re-

placed by equality.

Counterexample 3.9. Let Ω = {· , ⋆} be a type with two binary basic operation symbols. Let

V and W be varieties of the type Ω defined by the identities x · x = x and x ⋆ x = x respec-

tively. Then V and W have no term idempotents, so TI(V) ∪ TI(W) = ∅, whereas V ∧W is

idempotent, so TI(V ∧W) = T (ω).
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A constant term idempotent p(x) of arity at most one is called a polar term. A variety V that

has a polar term is called polarized. For an algebra A ∈ V , the constant value of pA(x) is the

unique idempotent of A, which is called the pole of A. These notions are due to Maltsev [15].

E.g. every variety of groups is polarized with a polar term x · x−1 and the pole of a given group

is its identity element. The following proposition summarizes the results proven by Maltsev at

the beginning of Section 3 of [15].

Proposition 3.10. Let V be a variety. The following conditions are equivalent.

(i) V is polarized.

(ii) Every V–algebra has a unique idempotent.

(iii) For any algebra A, every V–congruence of A has a unique congruence class which is a

subalgebra of A.

If t(x1, . . . , xn) is a constant term idempotent of a variety V , then t(x, . . . , x) is a polar term

of V . Hence a variety is polarized iff it has a constant term idempotent. We will show that the

existence of a term idempotent and the existence of a constant term together imply the existence

of a constant term idempotent.

Proposition 3.11. Let V be a variety. If u is a term idempotent of V and v is a constant term

of V , then u and v are V–equivalent constant term idempotents of V .

Proof. The variety V satisfies the identity v(x1, . . . , xn) = v(y1, . . . , yn). Consequently V satis-

fies the identity v(x1, . . . , xn) = v(u, . . . , u). Since u is a term idempotent of V , the right-hand

side of this identity is V–equivalent to u. Hence V satisfies the identity v(x1, . . . , xn) = u. Thus

u and v are V–equivalent, so by Proposition 3.7(1) and Lemma 2.3, they are both constant term

idempotents of V .

Corollary 3.12. [19] All term idempotents of a polarized variety V are pairwise V–equivalent

and constant.
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4 Equational base

By Theorem 1.1, the Maltsev product V ◦W of varieties V andW is a prevariety, so the variety

generated by V ◦W coincides with the class H(V ◦W) of all homomorphic images of algebras

in V ◦W . We will construct an equational base for the variety H(V ◦W). For a varietyW and

a set Σ of equations, let us define a set ΣW of equations in the following way (see [18]). If W

has no term idempotents, then ΣW = ∅. Otherwise

ΣW = {u(t1, . . . , tn) = v(t1, . . . , tn) | (u(x1, . . . , xn) = v(x1, . . . , xn)) ∈ Σ,

t1, . . . , tn are pairwiseW–equivalent term idempotents ofW}.

We will show that if a variety V is defined by a set Σ of identities, then the variety H(V ◦W) is

defined by ΣW .

Lemma 4.1. [18, Lem. 2.2] LetV andW be varieties andΣ be a set of identities. If the identities

in Σ are true in V , then the identities in ΣW are true in H(V ◦W).

Proof. LetA ∈ V ◦W , u(y1, . . . , yn) = v(y1, . . . , yn) be an identity true in V , t1(x), . . . , tn(x)

be pairwiseW–equivalent term idempotents of W , and a ∈ Ax. For any 1 ≤ i ≤ n,

ti(a)/ϱ
W
A = ti(a1/ϱ

W
A , . . . , ak/ϱ

W
A ) = t1(a1/ϱ

W
A , . . . , ak/ϱ

W
A ) = t1(a)/ϱ

W
A ,

so elements ti(a), 1 ≤ i ≤ n, all lie in the congruence class t1(a)/ϱWA . Since t1 is a term idem-

potent of W , for any f ∈ Ω,

f(t1(a)/ϱ
W
A , . . . , t1(a)/ϱ

W
A ) = f(t1(a), . . . , t1(a))/ϱ

W
A = t1(a)/ϱ

W
A .

Thus t1(a)/ϱWA is an idempotent of A/ϱWA . By Lemma 2.13, t1(a)/ϱWA is a subalgebra of A.

Since A ∈ V ◦W , t1(a)/ϱWA belongs to V , so it satisfies the identity u = v. Consequently,

u(t1(a), . . . , tn(a)) = v(t1(a), . . . , tn(a)).

Therefore A satisfies the identity u(t1, . . . , tn) = v(t1, . . . , tn).
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Let Σ be a set of identities true in V and let U be the variety defined by ΣW . We have shown

that V ◦W ⊆ U . It follows that H(V ◦W) ⊆ U , and so every algebra in H(V ◦W) satisfies the

identities in ΣW .

Theorem 4.2. [18, Thm. 2.10] Let V andW be varieties. If Σ is an equational base for V , then

ΣW is an equational base for H(V ◦W).

Proof. Let Σ be an equational base for V and U be the variety defined by ΣW . By Lemma 4.1,

H(V ◦W) ⊆ U . To prove the opposite inclusion, we will show that all free U–algebras belong

to V ◦W . Let X be a set and T be the term algebra T (X). Since

W ⊆ V ◦W ⊆ H(V ◦W) ⊆ U ,

one has the inclusion ϱU
T ⊆ ϱWT . By Corollary 2.22, the congruence ϱWT /ϱU

T is the W–replica

congruence of the free U–algebra FU(X) = T (X)/ϱU
T . Let C be a congruence class of ϱWT /ϱU

T

which is a subalgebra of FU(X), u(x1, . . . , xn) = v(x1, . . . , xn) be some identity from Σ, and

t1/ϱ
U
T , . . . , tn/ϱ

U
T ∈ C. Then

⋃
C is a congruence class of ϱWT which, by Lemma 2.10, is a

subalgebra of A. Thus, by Lemma 2.13,
⋃
C is an idempotent of FW(X). Consequently, by

Proposition 3.1, t1, . . . , tn ∈
⋃
C are pairwise W–equivalent term idempotents of W . Hence

the identity u(t1, . . . , tn) = v(t1, . . . , tn) belongs to ΣW , and so it is true in U . By (2.1), terms

u(t1, . . . , tn) and v(t1, . . . , tn) lie in the same congruence class of ϱU
T . Therefore

u(t1/ϱ
U
T , . . . , tn/ϱ

U
T ) = u(t1, . . . , tn)/ϱ

U
T = v(t1, . . . , tn)/ϱ

U
T = v(t1/ϱ

U
T , . . . , tn/ϱ

U
T ).

Thus C satisfies the identities in Σ, which implies that C ∈ V . Hence FU(X) ∈ V ◦W . By

Corollary 2.20, U ⊆ H(V ◦W). We have shown that varieties H(V ◦W) and U coincide.

Corollary 4.3. [18, Cor. 2.11] If a variety W has no term idempotents, then H(V ◦W) = A

for any variety V .

Corollary 4.4. If a variety V satisfies an identity u = v such that both u and v are nullary terms,

then for any variety W that has term idempotents, H(V ◦W) also satisfies u = v.
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Example 4.5. The variety S of Ω–semilattices is idempotent, so every term is a term idem-

potent of S . Terms t and s are equivalent in S iff var(t) = var(s). Thus for a variety V defined

by a set Σ of identities, the variety H(V ◦ S) is defined by the identities

ΣS = {u(t1, . . . , tn) = v(t1, . . . , tn) |

(u(x1, . . . , xn) = v(x1, . . . , xn)) ∈ Σ, ∀1 ≤ i, j ≤ n var(ti) = var(tj)}.

E.g. Lz is defined by Σ = {x · y = x}, so H(Lz ◦ S) is defined by

ΣS = {p · q = p | var(p) = var(q)}.

Example 4.6. LetW be a polarized variety with a polar term p(x). By Corollary 3.12, all term

idempotents of W areW–equivalent, so a term is a term idempotent of W iff it isW–equivalent

to p(x). Thus for a variety V defined by a set Σ of identities, the variety H(V ◦ W) is defined

by the identities

ΣW = {u(t1, . . . , tn) = v(t1, . . . , tn) |

(u(x1, . . . , xn) = v(x1, . . . , xn)) ∈ Σ, ∀1 ≤ i ≤ n W |= ti = p(x)}.

For varieties V ,W ⊆ U , the Maltsev U–product V ◦U W coincides with the intersection

(V ◦W)∩ U . For any prevarieties P and P ′, there is an inclusion H(P ∩P ′) ⊆ H(P)∩H(P ′).

Hence H(V ◦U W) ⊆ H(V ◦W) ∩ U .

Proposition 4.7. Let V ,W ⊆ U be varieties. Then

H(V ◦U W) = H(V ◦W) ∩ U .

Proof. LetM be the variety H(V ◦W) and T be the term algebra T (X). Then F = T/ϱM∩U
T is

a free algebra of M∩ U . We will show that F ∈ V ◦W . By Lemma 2.15, ϱM∩U
T = ϱMT ∨ ϱU

T .

Let F ′ = T/ϱMT and let θ = (ϱMT ∨ ϱU
T )/ϱ

M
T . By Theorem 2.8, F ∼= F ′/θ. By Theorem 2.18,

F ′ ∈ V ◦W , becauseF ′ is a free algebra ofH(V ◦W). By Lemma 2.16, ϱWF ′ = (ϱMT ∨ ϱWT )/ϱMT .

SinceW ⊆ U , ϱU
T ⊆ ϱWT , so θ ⊆ ϱWF ′ . By Lemma 2.26, F ′/θ ∈ V ◦W .

We have shown that all free algebras of H(V ◦W)∩ U belong to V ◦U W = (V ◦W)∩ U .

Thus, by Corollary 2.20, H(V ◦W) ∩ U ⊆ H(V ◦U W).
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Theorem 4.2 and Proposition 4.7 yield the following result.

Theorem 4.8. Let V ,W ⊆ U be varieties. If Σ is an equational base for V , then the variety

H(V ◦U W) is defined relative to U by ΣW .

Iskander [13, Thm. 4.11] provided a set of identities that defines the variety V ◦U W relative

to U for a weakly congruence permutable variety U . That set of identities also depends on a

chosen equational base Σ for V . It forms a subset of ΣW , because the term f that occurs in its

definition is a term idempotent of U , and thus also a term idempotent of W .

Let us apply Lemma 4.1 to obtain a result on term idempotents of the variety H(V ◦W).

Proposition 4.9. Let V and W be varieties. If t(x1, . . . , xn) is a term idempotent of V and

p1, . . . , pn are W–equivalent term idempotents of W , then t(p1, . . . , pn) is a term idempotent

of H(V ◦W).

Proof. Identities f(t, . . . , t) = t, f ∈ Ω, are true in V , so by Lemma 4.1, H(V ◦ W) satisfies

identities f(t(p1, . . . , pn), . . . , t(p1, . . . , pn)) = t(p1, . . . , pn), f ∈ Ω.

Corollary 4.10. If varieties V and W have term idempotents, then the variety H(V ◦ W) has

term idempotents.

Corollary 4.11. If W is an idempotent variety, then for any varietyV , all unary term idempotents

of V are also term idempotents of H(V ◦W).

Proof. Let t(x) be a term idempotent of V . The variable x is a term idempotent of W . The

term t(x) is the composition of t(x) and x, so by Proposition 4.9, it is a term idempotent of

H(V ◦W).

SinceW ⊆ H(V ◦W), every term idempotent of H(V ◦W) is also a term idempotent of W .

The following corollary gives a sufficient condition for these two varieties to have the same term

idempotents.

Corollary 4.12. If V is an idempotent variety and W is a variety, then the varieties H(V ◦W)

and W have the same term idempotents.
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Proof. Let t be a term idempotent of W . The substitution of t for the variable x in the term x

simply yields t. Since x is a term idempotent of V , by Proposition 4.9, t is a term idempotent of

H(V ◦W).

Let us examine how the Maltsev product of varieties interacts with regularity, irregularity,

and strong irregularity of its factors.

Proposition 4.13. Let V andW be varieties, and letW have unary term idempotents. Then the

variety H(V ◦W) is regular iff at least one of V and W is regular.

Proof. Let u(x1, . . . , xn) = v(x1, . . . , xn) be an identity true in V . Suppose that V is regular.

Then u = v is regular and thus its consequence u(t1, . . . , tn) = v(t1, . . . , tn), for any terms

t1, . . . , tn, is regular. Now suppose that W is regular. Let t1, . . . , tn be pairwise W–equivalent

terms. Then all terms t1, . . . , tn have the same variables, and so the identity u(t1, . . . , tn) =

v(t1, . . . , tn) is regular. Therefore, if at least one of V and W is regular, then the identities in

the equational base of H(V ◦W) provided by Theorem 4.2 are regular. Since all consequences

of regular identities are regular, all identities true in H(V ◦W) are regular. Hence it is a regular

variety.

An irregular variety always satisfies an irregular identity of the form t(x, y) = u(x), where

the left-hand side contains the variable y. Suppose that V and W are irregular. Then there are

irregular identities t(x, y) = u(x) and s(x, y) = v(x) true in V andW respectively. Let h(x) be

a unary term idempotent of W . The variety W satisfies the identity h(s(x, y)) = h(v(x)) and

by Proposition 3.7(2), the terms h(s(x, y)) and h(v(x)) are term idempotents of W . Thus by

Lemma 4.1, H(V ◦W) satisfies the identity

t
(
h(v(x)), h(s(x, y))

)
= u(h(v(x))). (4.1)

Since terms t(x, y) and s(x, y) contain the variable y, the left-hand side of (4.1) also contains

the variable y. Hence (4.1) is irregular, and so H(V ◦W) is an irregular variety.

Corollary 4.14. Let V and W be varieties, and let W have unary term idempotents. Then the

variety H(V ◦W) is irregular iff both V and W are irregular.
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Proposition 4.15. Let V andW be strongly irregular varieties, and letW be idempotent. Then

the variety H(V ◦W) is strongly irregular.

Proof. Suppose that varieties V andW are strongly irregular andW is idempotent. Then there

are strongly irregular identities t(x, y) = x and s(x, y) = x true in V andW respectively. Both

s(x, y) and x are term idempotents of W , so by Lemma 4.1, H(V ◦W) satisfies the identity

t(x, s(x, y)) = x. (4.2)

Since terms t(x, y) and s(x, y) are binary, the left-hand side of (4.2) is also binary. Hence (4.2)

is strongly irregular, and so H(V ◦W) is a strongly irregular variety.

In [7], a class F of varieties of the same type is called robust if whenever idempotent varieties

V and W belong to F, then H(V ◦W) belongs to F. The results above imply in particular that

the following families are robust.

(1) The class of idempotent regular varieties of a given type that has symbols of non-nullary

basic operations.

(2) The class of idempotent strongly irregular varieties of a given type.

An idempotent variety of a type that has a non-nullary basic operation symbol f(x1, . . . , xn),

has a unary term idempotent f(x, . . . , x), so Proposition 4.13 is applicable. If a type Ω has a

symbol of a basic operation of arity at least two, then for an idempotent variety of the type Ω,

irregularity implies strong irregularity. Hence the class of idempotent irregular varieties of the

type Ω coincides with (2).
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5 Term idempotent identities

If u and v are term idempotents of a variety V and an identity u = v is true in V , then we will

call u = v a term idempotent identity of V (see [19]). By Proposition 3.7(1), if one side of an

identity σ true in V is a term idempotent of V , then the other side of σ must also be a term

idempotent of V , and so σ is a term idempotent identity of V . To motivate this definition let us

note that the identities in the equational base for H(V ◦ W) provided by Theorem 4.2 are term

idempotent identities of W .

Proposition 5.1. LetW be a variety and Σ be a set of equations. Every identity in ΣW is a term

idempotent identity of W .

Proof. Every identity in ΣW is of the form

u(t1, . . . , tn) = v(t1, . . . , tn), (5.1)

where t1, . . . , tn are W–equivalent term idempotents of W and u(x1, . . . , xn) = v(x1, . . . , xn)

is an identity in Σ. By Proposition 3.7(3), both sides of (5.1) are term idempotents of W that

areW–equivalent to t1. Hence (5.1) is a term idempotent identity of W .

If the identities in Σ are term idempotent identities of V , then the identities in ΣW are addi-

tionally term idempotent identities of H(V ◦W).

Proposition 5.2. Let V and W be varieties and Σ be a set of equations. If every identity in Σ

is a term idempotent identity of V , then every identity in ΣW is a term idempotent identity of

H(V ◦W).

Proof. Consider the identity

u(t1, . . . , tn) = v(t1, . . . , tn), (5.2)

where t1, . . . , tn are W–equivalent term idempotents of W and u(x1, . . . , xn) = v(x1, . . . , xn)

is an identity in Σ. Then u is a term idempotent of V . By Proposition 4.9, u(t1, . . . , tn) is a term

idempotent of H(V ◦W), so (5.2) is a term idempotent identity of H(V ◦W).
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Let V be a variety and Σ be a set of term idempotent identities of V . Let us investigate

whether the nontrivial consequences of Σ are also term idempotent identities of V . It is evident

that all nontrivial consequences of Σ inferred by an application of any of the rules (e1)–(e3) of

equational logic are term idempotent identities of V . By Proposition 3.7(2), the same is true

in case of the rule (e4). However a nontrivial consequence of Σ inferred by an application

of the rule (e5) may not be a term idempotent identity of V . E.g. in the variety of groups,

the term idempotent identity x · x−1 = y · y−1 has the consequence (x · x−1) · z = (y · y−1) · z,

which is not a term idempotent identity. We will characterize varieties in which all nontrivial

consequences of any set of term idempotent identities are also term idempotent identities.

A sink is a subset S of an algebra A such that

f(a1, . . . , ai−1, s, ai+1, . . . , an) ∈ S

for every s ∈ S, f ∈ Ω, a1, . . . , an ∈ A, and 1 ≤ i ≤ n. Note that S is a subalgebra of A.

Proposition 5.3. Let V be a variety that has term idempotents. The following conditions are

equivalent.

(i) Every nontrivial consequence of any set of term idempotent identities of V is a term idem-

potent identity of V .

(ii) The set TI(V) of term idempotents of V is a sink of T (ω).

(iii) For every V–algebra A, the set I(A) of idempotents of A is a sink of A.

Proof. First we will prove the equivalence of conditions (i) and (ii). Assume (i). Let t ∈ TI(V),

f ∈ Ω, p1, . . . , pn ∈ T (ω), and 1 ≤ i ≤ n. The identity f(t, . . . , t) = t is a nontrivial term

idempotent identity of V . It has the nontrivial consequence

f(p1, . . . , pi−1, f(t, . . . , t), pi+1, . . . , pn) = f(p1, . . . , pi−1, t, pi+1, . . . , pn). (5.3)

By (i), (5.3) is a term idempotent identity of V , so its right-hand side is a term idempotent of V .

Thus TI(V) is a sink of T (ω).

Now assume (ii). Let u = v be a term idempotent identity of V and consider its consequence

t(x1, . . . , xi−1, u, xi+1, . . . , xn) = t(x1, . . . , xi−1, v, xi+1, . . . , xn) (5.4)
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inferred using the rule (e5). Since u and v are term idempotents of V , by (ii), both sides of

(5.4) are also term idempotents of V . Hence (5.4) is a term idempotent identity of V . Taking

into account the discussion preceding the statement of this proposition, it follows that every

nontrivial consequence of a set of term idempotent identities of V is a term idempotent identity

of V .

We will now prove the equivalence of (ii) and (iii). Assume (ii). Let A ∈ V , e ∈ I(A),

f ∈ Ω, a1, . . . , an ∈ A, and 1 ≤ i ≤ n. Let t(x) ∈ TI(V). By (ii),

f(x1, . . . , xi−1, t(x), xi+1, . . . , xn) ∈ TI(V).

Since t(e) = e,

f(a1, . . . , ai−1, t(e), ai+1, . . . , an) = f(a1, . . . , ai−1, e, ai+1, . . . , an),

so by Proposition 3.2,

f(a1, . . . , ai−1, e, ai+1, . . . , an) ∈ I(A).

Hence I(A) is a sink of A.

Now assume (iii). Let t ∈ TI(V), f ∈ Ω, p1, . . . , pn ∈ T (ω), and 1 ≤ i ≤ n. Let F be the

free V–algebra FV(ω). By Proposition 3.1, [t ] ∈ I(F ). By (iii), I(F ) is a sink of F , so

[f(p1, . . . , pi−1, t, pi+1, . . . , pn)] = f([p1], . . . , [pi−1], [t ], [pi+1], . . . , [pn]) ∈ I(F ).

Thus, by Proposition 3.1,

f(p1, . . . , pi−1, t, pi+1, . . . , pn) ∈ TI(V).

Hence TI(V) is a sink of T (ω).

An element z of an algebra A is called a zero of A if it forms a one-element sink {z}. If a

zero exists in an algebra, then it is unique. A constant term p(x) of a variety V will be called a

zero term of V if for every algebra A ∈ V , the unique value of pA(x) is the zero of A (see [19]).

Equivalently, a term p(x) is a zero term of a variety V if it is constant and

V |= f(y1, . . . , yi−1, p(x), yi+1, . . . , yn) = p(x), ∀f ∈ Ω ∀1 ≤ i ≤ n. (5.5)
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Note that a zero term is a polar term. Thus a varietyV that has a zero term is necessarily polarized

and the pole of every algebra A ∈ V is the zero of A.

Proposition 5.4. [19, Prop. 6.4] Let V be a polarized variety. The following conditions are

equivalent.

(i) Every nontrivial consequence of any set of term idempotent identities of V is a term idem-

potent identity of V .

(ii) The pole of any V–algebra A is a zero of A.

(iii) Polar terms of V are zero terms of V .

(iv) V has a zero term.

Proof. Every V–algebra has a unique idempotent – its pole. Hence, by Proposition 5.3, the

conditions (i) and (ii) are equivalent. The conditions (ii) and (iii) are equivalent by the definition

of a zero term. Clearly, (iii) implies (iv). Assume (iv). Let p(x) be a zero term of V . By Corol-

lary 3.12, every polar term of V is V–equivalent to p(x). It follows that every polar term of V

satisfies the identities (5.5). Thus (iii) holds.
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6 Term idempotent varieties

We will say that a variety V is term idempotent if every nontrivial identity true in V is a term

idempotent identity of V (see [19]). In the previous chapter we saw that a set of term idempotent

identities may have consequences that are not term idempotent identities. Hence for a variety to

be term idempotent, it is not sufficient that it has an equational base which consists of term idem-

potent identities. As a corollary of Proposition 5.3, one obtains the following characterization

of term idempotent varieties.

Proposition 6.1. A variety V is term idempotent iff it has an equational base that consists of

term idempotent identities and either of the following equivalent conditions is satisfied.

(i) The set TI(V) of term idempotents of V is a sink of T (ω).

(ii) For every V–algebra A, the set I(A) of idempotents of A is a sink of A.

If V is an idempotent variety, then every term is a term idempotent of V . It follows that all

identities true in V are term idempotent identities of V . Hence every idempotent variety is a

term idempotent variety. Let us look at some examples of term idempotent varieties that are not

idempotent.

Example 6.2. The variety A satisfies only trivial identities, so it is a term idempotent variety.

It is the only term idempotent variety that has no term idempotents.

Example 6.3. [19, Ex. 3.5] Recall that Sg is the variety of semigroups andRb is the variety of

rectangular bands. LetRs be the subvariety of Sg defined relative to Sg by the identity

(x · y) · z = x · z. (6.1)

Note that Rb is the subvariety of Rs defined relative to Rs by the idempotent law x · x = x.

In Sg, every term is a product of variables (we will omit the parentheses). If n ≥ 2 and t is the

term x1 · . . . · xn, thenRs |= t = x1 · xn and

Rs |= t · t = x1 · xn · x1 · xn = x1 · xn = t.
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Consequently, the set of term idempotents ofRs consists of all terms distinct from variables. It

is clearly a sink of T (ω). The identities that define Sg and the identity (6.1) form an equational

base forRswhich consists of term idempotent identities. Thus, by Proposition 6.1,Rs is a term

idempotent variety.

Example 6.4. [19, Ex. 3.4] We will say that an algebra is constant if one of its elements is the

constant value of every basic operation. The variety CΩ of all constant algebras of a type Ω is

defined by the identities

f(x1, . . . , xn) = g(y1, . . . , ym), ∀f, g ∈ Ω.

Wewill usually omit the subscript andwrite simply C. The variety C satisfies a nontrivial identity

u = v iff neither u nor v is a variable. Thus, if t is a term distinct from a variable, then C satisfies

the identities f(t, . . . , t) = t, for all f ∈ Ω, so t is a term idempotent of C. Hence every nontrivial

identity true in C is a term idempotent identity. It follows that C is a term idempotent variety.

Note that every term that is not a variable is constant in C.

Of special interest is the variety C{ ·} for the magma type {·}. It is defined by the identity

x · y = z · t. In particular, algebras in C{ ·} are semigroups. We will denote the variety C{ ·} of

constant semigroups by Cs.

Example 6.5. Let Ω be a type. For any natural number n, let Tn be the set of all terms of the

typeΩ that are distinct from variables and that contain at least n occurrences of variables. Let Cn

be the variety of the type Ω defined by the set of identities Σn = {u = v | u, v ∈ Tn}. The rules

(e2)–(e5) applied to Σn cannot produce an identity that has less than n occurrences of variables

on either side, so Σn contains all nontrivial identities true in Cn. If u ∈ Tn, then the identities

f(u, . . . , u) = u, f ∈ Ω, belong to Σn. Therefore every identity in Σn is a term idempotent

identity of Cn. Hence Cn is a term idempotent variety. Note that C0 coincides with C.

In case whenΩ is the magma type {·}, there are no terms distinct from variables that contain

less than two occurrences of a variable, so the varieties C0, C1, and C2 coincide with Cs. The

associative law belongs to Tn iff n ≤ 3. Hence C3 is also a variety of semigroups.
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Example 6.6. [19, Ex. 3.6] Let Ω = {f} be a type with a single unary basic operation symbol.

For a natural number n, let Un be the variety of the type Ω defined by the identity

f(fn(x)) = fn(x). (6.2)

The set of term idempotents of Un consists of all terms fm(x),m ≥ n. It is a sink of T (ω). The

defining identity (6.2) is a term idempotent identity. Hence Un is a term idempotent variety.

The varieties in Examples 6.3, 6.4, and 6.5 are irregular, but not strongly irregular. We will

show that there are no term idempotent varieties that are strongly irregular and not idempotent.

Proposition 6.7. [19, Prop. 3.8] If a term idempotent variety is strongly irregular, then it is

idempotent.

Proof. A strongly irregular term idempotent variety V satisfies a strongly irregular identity

t(x, y) = x. This identity is nontrivial, so it is a term idempotent identity, and thus its right-hand

side x is a term idempotent of V . Therefore V is idempotent.

The inclusion of Proposition 3.8(2) can be replaced by equality in case when Vi, i ∈ I , are

term idempotent varieties.

Proposition 6.8. If Vi, i ∈ I , are term idempotent varieties, then TI(
∧
i∈I Vi) =

⋃
i∈I TI(Vi).

Proof. By Proposition 3.8(2),
⋃
i∈I TI(Vi) ⊆ TI(

∧
i∈I Vi). We will show that the opposite inclu-

sion also holds. Let W =
∧
i∈I Vi. By Theorem 6.10, W is term idempotent. Let u ∈ TI(W).

For any f ∈ Ω, the variety W satisfies the nontrivial identity u = f(u, . . . , u). Therefore, by

Corollary 2.24, there exists j ∈ I and a term v distinct from u, such that Vj |= u = v. Since Vj

is term idempotent, u = v is a term idempotent identity of Vj . Hence

u ∈ TI(Vj) ⊆
⋃
i∈I

TI(Vi).

We will now investigate the properties of the class of term idempotent varieties of a given

type. The following counterexample shows that this class is not in general closed under subva-

rieties.
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Counterexample 6.9. Let V be a variety of the type Ω = {f, g, h} with three unary basic oper-

ation symbols, defined by the identities

f(f(x)) = f(x), g(f(x)) = f(x), h(f(x)) = f(x). (6.3)

The non-variable terms of the type Ω are of the form pn(· · · p2(p1(x)) · · · ), where each pi is f ,

g, or h. It is easy to see that if σ is a nontrivial consequence of the identities (6.3), then both

sides of σ contain at least one occurrence of f . Since f(x) is a term idempotent of V , by Prop-

osition 3.7(2,3), every term containing at least one occurrence of f is a term idempotent of V .

Hence V is a term idempotent variety. Now let W be the subvariety of V defined relative to V

by the identity

g(x) = h(x). (6.4)

It is easy to see that no nontrivial consequence of (6.4) (other than h(x) = g(x)) has g(x) as one

of its sides. Thus the identity f(g(x)) = g(x) is not true inW , so g(x) is not a term idempotent

of W . Hence (6.4) is not a term idempotent identity of W , which implies that W is not term

idempotent.

Theorem 6.10. The class of term idempotent varieties of a type Ω forms a complete sublattice

of the lattice of varieties of the type Ω.

Proof. The trivial variety and the variety of all algebras, i.e. the smallest and the largest variety

respectively, are both term idempotent. Let Vi, i ∈ I , be term idempotent varieties. Let u = v

be a nontrivial identity true in the join U =
∨
i∈I Vi. Then u = v is true in every Vi, i ∈ I , so it

is a term idempotent identity in every Vi, i ∈ I . Hence the identities f(u, . . . , u) = u, f ∈ Ω,

are true in each Vi, i ∈ I , and thus they are also true in U . Therefore u = v is a term idempotent

identity of U . Consequently U is a term idempotent variety.

Let u = v be a nontrivial identity true in the meet W =
∧
i∈I Vi. Then, by Corollary 2.24,

there exist j ∈ I and a term t distinct from u such that Vj |= u = t. Since Vj is term idempotent,

u = t is a term idempotent identity of Vj . Hence u is a term idempotent of Vj , and thus also
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of W . It follows that u = v is a term idempotent identity of W , so W is a term idempotent

variety.

By Theorem 6.10, for any variety V , there exist the smallest term idempotent variety that

contains V and the largest term idempotent subvariety of V . We will denote these term idem-

potent varieties by V△ and V▽ respectively. The assignments V 7→ V△ and V 7→ V▽ define

respectively a closure operator and a kernel operator on the lattice of all varieties of a given

type.

Proposition 6.11. For a variety V , the variety V△ is defined by the identities

{u = v | V |= u = v, ∀t(y,x) ∈ T (ω) t(u,x) ∈ TI(V)}. (6.5)

Proof. Let

U = {u ∈ TI(V) | ∀t(y,x) ∈ T (ω) t(u,x) ∈ TI(V)}.

It is the largest subset of TI(V) which is a sink. Let Σ be the set (6.5). It consists of all term

idempotent identities of V whose both sides belong to U . By Proposition 6.1, a variety defined

by term idempotent identities is term idempotent iff its term idempotents form a sink. Hence

the variety U defined by Σ is a term idempotent variety that contains V . Furthermore, for every

other term idempotent variety U ′ that contains V , the set TI(U ′) is a sink, so TI(U ′) ⊆ U . Thus

Id(U ′) ⊆ Σ. Consequently, U ⊆ U ′.

Example 6.12. Let V be a variety that has no term idempotents. Then the set (6.5) is empty, so

V△ coincides with the variety A of all algebras. E.g. Sg△ = A.

Example 6.13. If TI(V) is a sink of T (ω), then V△ is defined by all term idempotent identities

true in V . E.g. if V andW are the varieties defined in Counterexample 6.9, thenW△ = V .

For a variety V , let S(V) denote the set of sides of all nontrivial identities true in V . E.g.

(x · y) · z = x · (y · z) is a nontrivial identity true in the variety Sg of semigroups, so both terms

(x · y) · z and x · (y · z) belong to S(Sg).
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Proposition 6.14. For a variety V , the subvariety V▽ is defined relative to V by the identities

{f(u, . . . , u) = u | u ∈ S(V), f ∈ Ω}. (6.6)

Proof. If u ∈ S(V) is a left-hand side of a nontrivial identity σ true in V , then the terms

f(p1, . . . , pi−1, u, pi+1, . . . , pn), f ∈ Ω, p1, . . . , pn ∈ T (ω), 1 ≤ i ≤ n, (6.7)

are the left-hand sides of the consequences of σ inferred by the rule (e5) of equational logic.

Hence the terms (6.7) belong to S(V), which implies that S(V) is a sink of T (ω).

Let Σ be the union of Id(V) and the set (6.6), and let W be the variety defined by Σ. Since

TI(W) coincides with S(V), it is a sink of T (ω). The identities of Σ are term idempotent identi-

ties of W , so by Proposition 6.1,W is term idempotent. Each term idempotent subvariety of V

satisfies the identities of Σ, so it is a subvariety of W .

The set of identities provided by Proposition 6.14 is infinite. However sometimes it is pos-

sible to find a finite set of identities that defines V▽ relative to V .

Example 6.15. We will show that Sg▽ is defined relative to Sg by the identity

((x · y) · z) · ((x · y) · z) = (x · y) · z. (6.8)

Let V be the subvariety of Sg defined relative to Sg by the identity (6.8). Then the terms

(x · y) · z and x · (y · z) are term idempotents of V . Both sides of any nontrivial identity true in

V contain at least three occurrences of a variable. Hence a term t that is a side of a nontrivial

identity true in V is of the form (p · q) · r or p · (q · r) for some terms p, q, and r. Thus, by

Proposition 3.7(2), t is a term idempotent of V . It follows that V is term idempotent. Since

every term idempotent subvariety of Sg must satisfy the identity (6.8), V coincides with Sg▽.

Example 6.16. Let Com be the variety of commutative magmas. It is defined by the identity

x · y = y · x. The variety Com▽ is defined relative to Com by the identity (x · y) · (x · y) = x · y.

The proof is analogous to that of Example 6.15.
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The regularization of a variety V is the variety defined by all regular identities true in V (see

[21, p. 48]). The following proposition shows that the class of term idempotent varieties of a

given type is closed under regularization.

Proposition 6.17. [19, Prop. 3.7] If V is a term idempotent variety, then the regularization of V

is a term idempotent variety.

Proof. Let Ṽ be the regularization of a term idempotent variety V and let u = v be a nontrivial

identity true in Ṽ . Then u = v is also true in V , so u is a term idempotent of V . Thus V satisfies

the identities f(u, . . . , u) = u, for all f ∈ Ω. Since these identities are regular, they are also

true in Ṽ . Therefore u is a term idempotent of Ṽ . Hence Ṽ is a term idempotent variety.

It is known that for idempotent varieties V andW , the variety H(V ◦W) is also idempotent.

Let us prove this fact using the results of this work. LetV andW be idempotent varieties. ThenV

satisfies the identities f(x, . . . , x) = x, f ∈ Ω, and the term x is a term idempotent of W . Thus,

by Lemma 4.1, H(V ◦ W) satisfies the identities f(x, . . . , x) = x, f ∈ Ω, so it is idempotent.

Now let us see when the variety H(V ◦W) is term idempotent.

Proposition 6.18. Let V and W be varieties. If V is idempotent and TI(W) is a sink of T (ω),

then the variety H(V ◦W) is term idempotent.

Proof. Let Σ be an equational base for V and let Ψ be the smallest equational theory that con-

tains ΣW . By Theorem 4.2, Ψ is the equational theory of H(V ◦W). By Proposition 5.1, the

identities in ΣW are term idempotent identities of W . Thus, by Proposition 5.3, all nontriv-

ial identities in Ψ are term idempotent identities of W . By Corollary 4.12, varieties H(V ◦W)

andW have the same term idempotents, so all nontrivial identities inΨ are also term idempotent

identities of H(V ◦W).

Corollary 6.19. Let V and W be varieties. If V is idempotent and W is term idempotent, then

the variety H(V ◦W) is term idempotent.

One might hope to extend this result to the case when V is term idempotent. However this

is not possible as the following counterexample shows.
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Counterexample 6.20. The term idempotent variety Cs of all constant semigroups is defined

by the identity x · y = z · t, which we will denote by σ. The set {σ}Cs is thus an equational base

for H(Cs ◦ Cs). Every identity in {σ}Cs is of the form t1 · t2 = t3 · t4 for some terms t1, t2, t3,

and t4 containing at least two occurrences of variables. Therefore a term of the form t · x never

occurs as a side of an identity in {σ}Cs. Hence it can occur as a side of a nontrivial identity

true in H(Cs ◦ Cs) only as a result of application of the rule (e5), so only in case of an identity

of the form t · x = s · x. It follows that none of the identities (t · x) · (t · x) = t · x, t ∈ T (ω),

is true in H(Cs ◦ Cs). Consequently, none of the terms t · x, t ∈ T (ω), is a term idempotent of

H(Cs ◦ Cs). Thus H(Cs ◦ Cs) is not term idempotent.

As a corollary of Proposition 5.4 one obtains the following characterization of polarized

term idempotent varieties.

Proposition 6.21. A variety V is polarized and term idempotent iff it has an equational base

that consists of term idempotent identities and either of the following equivalent conditions is

satisfied.

(i) The pole of any V–algebra A is a zero of A.

(ii) Polar terms of V are zero terms of V .

(iii) V has a zero term.

Example 6.22. Example 6.5 introduced term idempotent varieties Cn, n ≥ 0. Let u(x) ∈ Tn.

Then u(x) is a term idempotent of Cn. The identity u(x) = u(y) is in Σn, so u(x) is a polar term

of Cn. Thus Cn is a polarized variety. This example is a generalization of [19, Ex. 6.2].

Proposition 6.23. The class of polarized term idempotent varieties of a type Ω together with

the variety A of all algebras of the type Ω forms a complete sublattice of the lattice of term

idempotent varieties of the type Ω.

Proof. Let Vi, i ∈ I , be a family of polarized term idempotent varieties. A subvariety of a

polarized variety is also polarized, so themeet
∧
i∈I Vi is a polarized term idempotent variety. Let

U be the join
∨
i∈I Vi. Since U is a term idempotent variety, if TI(U) is empty, then U coincides
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with A. Otherwise there is some p(x) ∈ TI(U). By Proposition 3.8(1), TI(U) =
⋂
i∈I TI(Vi).

Thus for any i ∈ I , p(x) ∈ TI(Vi), so by Corollary 3.12, p(x) is a polar term of Vi. Hence p(x)

is a polar term of U , which implies that U is a polarized term idempotent variety.

By Theorem 6.10 and Proposition 6.23, for any variety V distinct from A, there exists the

largest polarized term idempotent subvariety of V . We will denote it by Vpol. Observe that

Vpol = (V▽)pol.

Proposition 6.24. For a term idempotent varietyV distinct fromA, the subvarietyVpol is defined

by the identities

{u = v | u, v ∈ TI(V)}. (6.9)

Proof. Let Σ be the set (6.9) and W be the variety defined by Σ. By Corollary 3.12, all term

idempotents of Vpol are equivalent in Vpol. Thus Vpol satisfies the identities of Σ, so Vpol ⊆ W .

SinceΣ contains all nontrivial identities true in V , W is a subvariety of V . Let p(x) be a term

idempotent of V . Then p(x) is a polar term ofW , because Σ contains the identity p(x) = p(y).

By Proposition 6.1, TI(V) is a sink of T (ω). Therefore for any n–ary basic operation f and any

1 ≤ i ≤ n,

f(y1, . . . , yi−1, p(x), yi+1, . . . , yn) ∈ TI(V),

which implies that

(
f(y1, . . . , yi−1, p(x), yi+1, . . . , yn) = p(x)

)
∈ Σ.

Hence p(x) is a zero term of W . The equational base Σ for W consists of term idempotent

identities of W . By Proposition 6.21, W is term idempotent. We have shown that W is a

polarized term idempotent subvariety of V , so W ⊆ Vpol.

Proposition 6.25. For a variety V distinct fromA, the subvariety Vpol is defined by the identities

{u = v | u, v ∈ S(V)}.

Proof. By Proposition 6.24, Vpol = (V▽)pol is defined by the identities {u = v | u, v ∈ TI(V▽)}.

By Proposition 6.14, TI(V▽) = S(V).
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Example 6.26. In the variety Rs of Example 6.3, every term distinct from a variable is a term

idempotent. Hence TI(Rs) coincides with the set T2 of Example 6.5, and the equational base

{u = v | u, v ∈ TI(Rs)} forRspol coincides with the set Σ2. Consequently Rspol = C2 = Cs.

Example 6.27. Example 6.15 shows that TI(Sg▽) = T3. Hence Sgpol = (Sg▽)pol = C3.

Proposition 6.28. For any term idempotent variety V distinct fromA, the subvariety Vpol coin-

cides with the class of V–algebras that have a unique idempotent.

Proof. LetK be the class of V–algebras that have a unique idempotent. The pole of any algebra

A ∈ Vpol is the unique idempotent of A, so Vpol ⊆ K. Now let A ∈ K, e be the unique idempo-

tent of A, and u(x) = v(x) be an identity of (6.9). Since u and v are term idempotents of V ,

by Proposition 3.2, for any a ∈ Ax, one has u(a) = v(a) = e. Hence A satisfies the identity

u = v. It follows that A ∈ Vpol, which implies that K ⊆ Vpol.

For an algebra A and a sink S of A, let θS denote the congruence of A whose only non-

singleton congruence class is S. By Proposition 6.1, for a term idempotent variety V and an

algebra A ∈ V , the set I(A) of idempotents of A is a sink of A.

Proposition 6.29. Let V be a term idempotent variety distinct fromA. For any algebra A ∈ V ,

the congruence θI(A) of A is the Vpol–replica congruence of A.

Proof. Let A ∈ V . By Proposition 6.28, a congruence θ of A is a Vpol–congruence iff A/θ

has a unique idempotent. Recall that the element a/θ of A/θ is an idempotent of A/θ iff the

congruence class a/θ is a subalgebra of A. By Corollary 3.5, the latter is equivalent to a/θ

containing an idempotent of A. It follows that a congruence θ of A is a Vpol–congruence iff one

of its congruence classes contains I(A) as a subset. Since θI(A) is the smallest such congruence,

it is the Vpol–replica congruence of A.
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7 Replica congruences

For a variety V and an algebra A of the same type, we will construct the V–replica congruence

of A. Let us define a binary relation δVA on A as

δVA =
{
(u(a), v(a)) | V |= u(x) = v(x), a ∈ Ax

}
. (7.1)

Observe that δVA is reflexive (because V |= x = x) and symmetric.

For a binary relation α on a set X , the transitive closure trα of α is the smallest transitive

binary relation on X that contains α. It is given by

trα = {(a, b) ∈ X2 | ∃n ≥ 2 ∃c1, . . . , cn ∈ X a = c1 α c2 α · · · α cn = b}.

Wewill show that the V–replica congruence of an algebraA coincides with the transitive closure

of the relation δVA.

Lemma 7.1. [18, Lem. 3.1] If α is a reflexive, symmetric, and operation–preserving binary

relation on an algebra A, then trα is a congruence of A.

Proof. Since trα is an equivalence relation, we only need to show that it preserves operations.

Let a1, . . . , an, b1, . . . , bn ∈ A be such that (ai, bi) ∈ trα for every 1 ≤ i ≤ n. Then for each

1 ≤ i ≤ n there are a natural number ki and elements ci1, . . . , ciki ∈ A such that one has the

sequence of relations

ai = ci1 α c
i
2 α · · · α ciki = bi.

We can assume that all n of these sequences are of equal length k. Otherwise we could use

reflexivity to lengthen the sequences that are shorter by repeating their last element a sufficient

number of times. Since α preserves operations,

f(a1, . . . , an) = f(c11, . . . , c
n
1 ) α f(c

1
2, . . . , c

n
2 ) α · · · α f(c1k, . . . , cnk) = f(b1, . . . , bn).

Hence (f(a1, . . . , an), f(b1, . . . , bn)) ∈ trα, so trα also preserves operations.

Theorem7.2. [18, Prop. 3.2] LetV be a variety andA be an algebra. TheV–replica congruence

of A coincides with the transitive closure of δVA.
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Proof. First we will show that tr δVA is a V–congruence. Let f be an n–ary basic operation and

a1, . . . , an, b1, . . . , bn ∈ A be such that (ai, bi) ∈ δVA for all 1 ≤ i ≤ n. Then for each 1 ≤ i ≤ n,

there are an identity ui(xi) = vi(xi) true inV and ci ∈ Axi such that ai = ui(ci) and bi = vi(ci).

It follows that V also satisfies the identity

f(u1, . . . , un) = f(v1, . . . , vn). (7.2)

If we substitute elements ci, 1 ≤ i ≤ n, for variables xi, 1 ≤ i ≤ n, then the left-hand side

and the right-hand side of (7.2) yield elements f(a1, . . . , an) and f(b1, . . . , bn) respectively.

These elements are thus related by δVA, which implies that δVA preserves operations. Hence, by

Lemma 7.1, tr δVA is a congruence.

Let u(x1, . . . , xn) = v(x1, . . . , xn) be an identity true in V and let a1, . . . , an ∈ A. By the

definition of δVA, the elements u(a1, . . . , an) and v(a1, . . . , an) are related by δVA, and thus also

by tr δVA. Therefore

u(a1/ tr δVA, . . . , an/ tr δ
V
A) = u(a1, . . . , an)/ tr δVA

= v(a1, . . . , an)/ tr δVA = v(a1/ tr δVA, . . . , an/ tr δ
V
A).

Hence A/ tr δVA satisfies all identities true in V . It follows that tr δVA is a V–congruence.

Now we will show that tr δVA is the smallest V–congruence. Let θ be a V–congruence and let

(a, b) ∈ δVA. There are an identity u(x1, . . . , xn) = v(x1, . . . , xn) true in V and c1, . . . , cn ∈ A

such that a = u(c1, . . . , cn) and b = v(c1, . . . , cn). Since A/θ ∈ V ,

u(a1, . . . , an)/θ = u(a1/θ, . . . , an/θ) = v(a1/θ, . . . , an/θ) = v(a1, . . . , an)/θ.

Thus (a, b) ∈ θ, so δVA ⊆ θ. Hence tr δVA ⊆ tr θ = θ.

We can now show that term idempotent varieties V are characterized by a certain property

of V–replica congruences.

Theorem 7.3. [19, Prop. 3.11] A varietyV of a typeΩ is term idempotent iff for any algebraA of

the type Ω, every congruence class of the V–replica congruence of A which is not a subalgebra

is a singleton.
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Proof. Assume that V is a term idempotent variety. Let A be an algebra, and let a ∈ A be

such that the congruence class a/ϱVA has more than one element. Then there exists b ∈ A dis-

tinct from a and such that (a, b) ∈ ϱVA. By Theorem 7.2, ϱVA is the transitive closure of δVA, so

there exists an element c ∈ A distinct from a and such that (a, c) ∈ δVA. This means that there

is an identity u(x1, . . . , xn) = v(x1, . . . , xn) true in V and elements d1, . . . , dn ∈ A such that

a = u(d1, . . . , dn) and c = v(d1, . . . , dn). From the fact that a and c are distinct, it follows that

u = v is a nontrivial identity. Hence u is a term idempotent of V . Since

a/ϱVA = u(d1, . . . , dn)/ϱ
V
A = u(d1/ϱ

V
A, . . . , dn/ϱ

V
A),

by Proposition 3.2, a/ϱVA is an idempotent of A/ϱVA ∈ V . Therefore, by Lemma 2.13, a/ϱVA is a

subalgebra of A.

Assume that in every algebra A, each congruence class of the V–replica congruence of A

which is not a subalgebra is a singleton. In particular, this is true for the term algebra T (ω).

Consider the free algebra FV(ω) = T (ω)/ϱVT (ω). Let u = v be a nontrivial identity true in V .

Then u and v are distinct terms and they are elements of some congruence class C of ϱVT (ω). By

the assumption, C is a subalgebra of T (ω). Thus, by Lemma 2.13, C is an idempotent of FV(ω),

and so its elements are term idempotents of V . Hence u = v is a term idempotent identity. It

follows that V is a term idempotent variety.

Let V andW be varieties. If W is idempotent, then for any algebra A ∈ V ◦W , all congru-

ence classes of theW–replica congruence ϱWA are subalgebras of A, which implies that they are

V–algebras. If W is not idempotent, then there may exist congruence classes of ϱWA which are

not subalgebras of A. However, if W is a term idempotent variety, then by Theorem 7.3, all

such congruence classes of ϱWA are singletons. We will see that this property ensures that term

idempotent varieties behave well as the second factor of the Maltsev product.

In a polarized variety V of a type Ω, every algebra has a unique idempotent. Hence for any

algebra A of the type Ω, there is a unique congruence class of ϱVA which is a subalgebra of A.

Therefore one has the following corollary.
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Corollary 7.4. A polarized variety V of a type Ω is term idempotent iff for any algebra A of the

typeΩ, there is a unique congruence class of theV–replica congruence ϱVA which is a subalgebra

of A, and all the other congruence classes of ϱVA are singletons.

An algebra A is called congruence regular if for any congruences θ and ψ of A, whenever

a/θ = a/ψ for some a ∈ A, the congruences θ and ψ coincide (see [8, Sec. 81]). Equivalently,

an algebra A is congruence regular if for any congruence θ of A, whenever a/θ = {a} for some

a ∈ A, the congruence θ coincides with the minimum congruence ∆A of A. E.g. all groups are

congruence regular. For a variety V , let V id denote the largest idempotent subvariety of V . It is

defined relative to V by the identities f(x, . . . , x) = x, f ∈ Ω.

Corollary 7.5. Let V be a term idempotent variety. If A is a congruence regular algebra that

does not belong to V , then the V–replica A/ϱVA of A belongs to V id.

Proof. Assume that ϱVA has a singleton congruence class. Then ϱVA = ∆A. ConsequentlyA ∈ V ,

which is a contradiction. Therefore none of the congruence classes of ϱVA are singletons. Hence,

by Theorem 7.3, all congruence classes of ϱVA are subalgebras of A. By Lemma 2.13, it follows

that A/ϱVA is an idempotent algebra, so it lies in V id.

Recall that T denotes the trivial variety of a given type.

Corollary 7.6. If V is a term idempotent variety, then T ◦ V = V .

Proof. Let A ∈ T ◦ V . Consider a congruence class C of ϱVA. If C is a subalgebra of A, then

C ∈ T , so C is a singleton. If C is not a subalgebra of A, then by Theorem 7.3, C is still a

singleton. Hence ϱVA = ∆A, which implies that A ∈ V .

Theorem 7.2 suggests that replica congruences may sometimes have a simpler form.

Corollary 7.7. Let V be a variety and A be an algebra. The V–replica congruence of A coin-

cides with the relation δVA iff δVA is transitive.

For varieties V and U , we will say that U has simple V–replica congruences if for every

A ∈ U , the relation δVA is the V–replica congruence of A.
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Proposition 7.8. Let V and U be varieties. If U has simple V–replica congruences, then for

every A ∈ U and every congruence θ of A, θ ∨ϱVA = θ ◦ ϱVA ◦ θ.

Proof. Assume that U has simple V–replica congruences and let A ∈ U and θ be a congruence

of A. Then ϱVA = δVA and ϱVA/θ = δVA/θ. Therefore

ϱVA/θ = δVA/θ

= {(u(a1/θ, . . . , an/θ), v(a1/θ, . . . , an/θ)) | V |= u(x) = v(x), a ∈ Ax}

= {(u(a)/θ, v(a)/θ) | V |= u(x) = v(x), a ∈ Ax}

= {(a/θ, b/θ) | (a, b) ∈ δVA}

= {(a/θ, b/θ) | (a, b) ∈ ϱVA}.

Hence (a/θ, b/θ) ∈ ϱVA/θ iff there are (a
′, b′) ∈ ϱVA such that (a, a′), (b, b′) ∈ θ, or equivalently

iff (a, b) ∈ θ ◦ ϱVA ◦ θ. By Lemma 2.16, ϱVA/θ = (θ ∨ϱVA)/θ. Thus

(a, b) ∈ θ ◦ ϱVA ◦ θ ⇐⇒ (a/θ, b/θ) ∈ ϱVA/θ ⇐⇒ (a, b) ∈ θ ∨ϱVA,

so θ ∨ϱVA = θ ◦ ϱVA ◦ θ.

We will show that if V ⊆ U , then the converse is also true.

Lemma 7.9. Let V ⊆ U be varieties and F be a free U–algebra. Then δVF is the V–replica

congruence of F .

Proof. Let F = T (X)/ϱU
T (X). By Theorem 7.2, δVF ⊆ ϱVF . We will show that the converse in-

clusion also holds. Let s(x1, . . . , xn), t(x1, . . . , xn) ∈ T (X) be such that ([s ], [ t ]) ∈ ϱVF . By

Corollary 2.23, V |= s = t. Since [s ] = s([x1 ], . . . , [xn ]) and [ t ] = t([x1 ], . . . , [xn ]), one has

([s ], [ t ]) ∈ δVF . Hence ϱVF ⊆ δVF .

Proposition 7.10. Let V ⊆ U be varieties. The following conditions are equivalent.

(i) U has simple V–replica congruences.

(ii) For every A ∈ U and any congruence θ of A, one has θ ∨ϱVA = θ ◦ ϱVA ◦ θ.
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(iii) For every free U–algebra F and any congruence θ of F , one has θ ∨ϱVF = θ ◦ ϱVF ◦ θ.

Proof. By Proposition 7.8, (i) implies (ii). Clearly (ii) implies (iii). Assume (iii). Let A ∈ U .

Then A is a homomorphic image of some free U–algebra F , i.e. there is a surjective homomor-

phism h :F → A. Suppose (a, b) ∈ ϱVA. There exist p, q ∈ F such that h(p) = a and h(q) = b.

By Theorem 2.7, there exists an isomorphism φ :F/ kerh→ A such that φ(p/ kerh) = a and

φ(q/ kerh) = b. Applying Lemma 2.14 to the inverse isomorphism φ−1 yields

(p/ kerh, q/ kerh) ∈ ϱVF/ kerh.

By Lemma 2.16 and by (iii),

ϱVF/ kerh = (kerh ∨ ϱVF )/ kerh = (kerh ◦ ϱVF ◦ kerh)/ kerh.

Hence (p, q) ∈ kerh ◦ ϱVF ◦ kerh. Thus there exist p′, q′ ∈ F such that

(p, p′) ∈ kerh, (p′, q′) ∈ ϱVF , (q′, q) ∈ kerh.

By Lemma 7.9, ϱVF = δVF , so there are an identity u(x1, . . . , xn) = v(x1, . . . , xn) true in V and

r1, . . . , rn ∈ F such that p′ = u(r1, . . . , rn) and q′ = v(r1, . . . , rn). It follows that

a = h(p) = h(p′) = h(u(r1, . . . , rn)) = u(h(r1), . . . , h(rn)),

b = h(q) = h(q′) = h(v(r1, . . . , rn)) = v(h(r1), . . . , h(rn)).

Hence (a, b) ∈ δVA. We have shown that ϱVA ⊆ δVA. Since the converse inclusion always holds,

ϱVA = δVA.

By Corollary 2.24, if V ∧W |= u = v, then there exist terms u = t1, t2, . . . , tn = v such

that for every 1 ≤ i < n, V |= ti = ti+1 or W |= ti = ti+1. The following proposition shows

that if V ∨W has simple W–replica congruences, then this chain of identities has a particular

form.

Proposition 7.11. Let V andW be varieties. If V∨W has simpleW–replica congruences, then

for every identity u(x) = v(x) true in V ∧W , there exist terms p(x) and q(x) such that

V |= u = p, W |= p = q, V |= q = v.
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Proof. Let F be the free algebra T (x)/ϱV∨WT (x) of V ∨W over the set x. Let u(x) = v(x) be an

identity true in V ∧W . By Corollary 2.23, ([u ], [v ]) ∈ ϱV∧WF . Furthermore, by Lemma 2.15,

ϱV∧WF = ϱVF ∨ ϱWF , and by Proposition 7.10, ϱVF ∨ ϱWF = ϱVF ◦ ϱWF ◦ ϱVF . Hence there exist terms

p, q ∈ T (x) such that [u ] ϱVF [ p ] ϱWF [q ] ϱVF [v ]. The conclusion follows by Corollary 2.23.

Since V ∨W ⊆ H(V ◦W), Proposition 7.11 provides a necessary condition for H(V ◦W)

to have simple W–replica congruences. On the other hand, the following proposition provides

a sufficient condition for H(V ◦W) to have simpleW–replica congruences.

Proposition 7.12. Let V andW be varieties, and letW be term idempotent. If there exist terms

p(x, y, z), q(x, y, z), and t(x) such that the following conditions are satisfied

(a) V |= p(x, y, y) = x, q(x, x, y) = y,

(b) W |= p(t(x), t(x), t(y)) = q(t(x), t(y), t(y)),

then H(V ◦W) has simple W–replica congruences.

Proof. LetA ∈ H(V ◦W). We will show that δWA is transitive. Let (a, b) ∈ δWA and (b, c) ∈ δWA .

If b coincides with a or c, then (a, c) ∈ δWA , so we can assume that b is distinct from a and c. It

follows that there are nontrivial identities u1(x1) = v1(x1) and u2(x2) = v2(x2) true inW and

elements d1 ∈ Ax1 and d2 ∈ Ax2 such that

a = u1(d1), b = v1(d1),

b = u2(d2), c = v2(d2).

The terms u1, v1, u2, and v2 are term idempotents of W , soW satisfies the identities t(u1) = u1,

t(v1) = v1, t(u2) = u2, and t(v2) = v2. We define the terms

u(x1,x2) = p(u1, v1, u2) and v(x1,x2) = q(v1, u2, v2).

The following identities are true inW ,

W |= u = p(u1, v1, u2) = p(u1, u1, u2) = p(t(u1), t(u1), t(u2))

= q(t(u1), t(u2), t(u2)) = q(u1, u2, u2) = q(v1, u2, v2) = v,
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where the middle identity follows from (b). HenceW satisfies the identity u = v.

By Lemma 4.1, (a) implies that A satisfies the identities

p(u1, v1, v1) = u1, q(u2, u2, v2) = v2.

Consequently,

u(d1,d2) = p(u1(d1), v1(d1), u2(d2)) = p(u1(d1), v1(d1), v1(d1)) = u1(d1) = a,

v(d1,d2) = q(v1(d1), u2(d2), v2(d2)) = q(u2(d2), u2(d2), v2(d2)) = v2(d2) = c.

We have shown that (a, c) ∈ δWA , so δWA is transitive. By Corollary 7.7, ϱWA = δWA .

For varieties V and W such that V ∧W is trivial, the implication of Proposition 7.12 be-

comes an equivalence and the conditions (a) and (b) reduce to a simpler form.

Proposition 7.13. Let V and W be varieties such that V ∧W is trivial, and let W be term

idempotent. The variety H(V ◦ W) has simple W–replica congruences iff there exist terms

p(x, y) and q(x, y) such that the following conditions are satisfied

(a) V |= p(x, y) = x, q(x, y) = y,

(b) W |= p(x, y) = q(x, y).

Proof. The conditions (a) and (b) are a special case of the conditions (a) and (b) of Proposi-

tion 7.12. Namely the case when the term t(x) is the variable x and the terms p(x, y, z) and

q(x, y, z) do not depend on the middle variable. Therefore (a) and (b) imply that H(V ◦W) has

simpleW–replica congruences.

Assume that H(V ◦W) has simple W–replica congruences. Then V ∨W also has simple

W–replica congruences, because V ∨W ⊆ H(V ◦W). Since V ∧W is trivial, it satisfies the

identity x = y. By Proposition 7.11, there are terms p(x, y) and q(x, y) such that (a) and (b) are

satisfied.

For a variety V and a term idempotent variety W such that V ∧W is trivial, there is a de-

scription of the W–replica congruence of an algebra A ∈ V ◦W which is different from the
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one provided by Theorem 7.2. The set Id(V) ∪ Id(W) is an equational base for the trivial vari-

etyV ∧W . Hence one of its consequences is the identity x = y. Furthermore, the identity x = y

contains only the variables x and y, so it is a consequence of Id{x,y}(V) ∪ Id{x,y}(W), where

Id{x,y}(U) is the subset of Id(U) consisting of identities whose both sides belong to T ({x, y}).

For a set X , let ∆X = {(a, a) | a ∈ X}. For any binary relation α ⊆ X2, the reflexive

closure of α is the smallest reflexive relation that contains α. It is given by α ∪ ∆X .

Theorem 7.14. Let V and W be varieties such that V ∧W is trivial, and let W be term idem-

potent. Let Σ ⊆ Id{x,y}(V) be such that the identity x = y is a consequence of Σ ∪ Id{x,y}(W).

Then for every algebra A ∈ V ◦W , the W–replica congruence of A is given by

ϱWA = {(a, b) ∈ A2 | ∀(u(x, y) = v(x, y)) ∈ Σ u(a, b) = v(a, b)} ∪ ∆A.

Proof. Let A ∈ V ◦W and let ψ be the binary relation from the statement of the theorem. By

Theorem 7.3, every congruence class of ϱWA is a subalgebra of A, and thus a V–algebra, or it is a

singleton. Hence every pair of distinct elements (a, b) ∈ ϱWA satisfies every identity in Σ, which

implies that ϱWA ⊆ ψ. Now let (a, b) ∈ ψ and a 6= b. Then a and b satisfy every identity in Σ.

Consequently, the elements a/ϱWA and b/ϱWA of A/ϱWA also satisfy every identity in Σ. Further-

more, since A/ϱWA ∈ W , the elements a/ϱWA and b/ϱWA satisfy every identity in Id{x,y}(W). It

follows that a/ϱWA = b/ϱWA . Hence (a, b) ∈ ϱWA , so ψ ⊆ ϱWA .

If W is idempotent, then for every A ∈ V ◦W and a ∈ A, the congruence class a/ϱWA is

a subalgebra of A, and so a/ϱWA ∈ V . Hence for any identity u(x, y) = v(x, y) true in V , one

has u(a, a) = v(a, a). Thus for idempotent W , the reflexive closure in the formula for ϱWA in

Theorem 7.14 is redundant and it may be dropped.

Example 7.15. Let V be a variety which satisfies an irregular identity t(x, y) = u(x), where the

term t(x, y) is binary. Then the intersection of V with the variety S of Ω–semilattices is trivial.

The set of identities {t(x, y) = u(x)} ∪ Id{x,y}(S) implies the identity x = y, because one has

x = u(x) = t(x, y) = t(y, x) = u(y) = y.
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Hence, by Theorem 7.14, for every A ∈ V ◦ S , the S–replica congruence of A is given by

ϱSA = {(a, b) ∈ A2 | t(a, b) = u(a)}.
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8 Sufficient condition

Let V and W be varieties, F be the class of free algebras of H(V ◦W), K be a class such that

F ⊆ K ⊆ H(V ◦W), and n be a positive integer. We will denote by PK(n) the condition that

for any algebra A ∈ K, any congruence θ of A, any congruence class D of θ ∨ϱWA which is a

subalgebra ofA, and any elements a1, . . . , an ∈ D, there exist a congruence classE of ϱWA which

is a subalgebra of A and elements a′1, . . . , a′n ∈ E such that (ai, a′i) ∈ θ for each 1 ≤ i ≤ n. By

Theorem 2.18, F ⊆ V ◦W ⊆ H(V ◦W). We will denote the condition PV◦W(n) by P (n).

The following proposition provides a method of proving that a given condition on varieties

V and W is sufficient for the Maltsev product V ◦W to be a variety. It suffices to prove that

this condition implies the conditions P (n), n ≥ 1.

Proposition 8.1. Let V and W be varieties. If P (n) holds for every n ≥ 1, then the Maltsev

product V ◦W is a variety.

Proof. In order to prove that the prevariety V ◦W is closed under homomorphic images, we

will show that each quotient of an algebra A ∈ V ◦W belongs to V ◦W . Let θ be a congru-

ence of A and C be a congruence class of ϱWA/θ which is a subalgebra of A/θ. Let an identity

u(x1, . . . , xn) = v(x1, . . . , xn) be true in V and let a1/θ, . . . , an/θ ∈ C. By Lemma 2.16, one

has ϱWA/θ = (θ ∨ϱWA )/θ. By Lemma 2.10, the congruence class
⋃
C of θ ∨ϱWA is a subalgebra

of A. By P (n), there are a congruence class E of ϱWA which is a subalgebra of A and elements

a′1, . . . , a
′
n ∈ E such that (ai, a′i) ∈ θ for each 1 ≤ i ≤ n. By Theorem 2.25, E ∈ V , which im-

plies that u(a′1, . . . , a′n) = v(a′1, . . . , a
′
n). Therefore

u(a1/θ, . . . , an/θ) = u(a′1/θ, . . . , a
′
n/θ) = u(a′1, . . . , a

′
n)/θ

= v(a′1, . . . , a
′
n)/θ = v(a′1/θ, . . . , a

′
n/θ) = v(a1/θ, . . . , an/θ).

Hence C satisfies every identity true in V , and thus C ∈ V . It follows that A/θ ∈ V ◦W .

In the proof of Proposition 8.1 we make use of the fact that every algebra in H(V ◦W) is a

homomorphic image of some algebra in V ◦W . Due to this fact, the assumption that the condi-

tions PV◦W(n), n ≥ 1, hold, allows us derive the conclusion. Every algebra in H(V ◦W) is also
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a homomorphic image of some algebra in F ⊆ V ◦W . Thus we could derive the same conclu-

sion assuming only that the conditions PF(n), n ≥ 1, hold. However the following result shows

that the conditions PF(n) and PV◦W(n) are equivalent for every n ≥ 1, so the latter approach is

not more general.

Proposition 8.2. Let V andW be varieties and let F ⊆ K,K′ ⊆ H(V ◦W). For every positive

integer n, the conditions PK(n) and PK′(n) are equivalent.

Proof. Wewill show thatPF(n) impliesPH(V◦W)(n). AssumePF(n). Each algebra inH(V ◦W)

is isomorphic to some quotient F/ψ of some free algebra F ∈ F . By Theorem 2.9, every con-

gruence of F/ψ is of the form θ/ψ for some congruence θ ⊇ ψ of F . The assignment θ 7→ θ/ψ

is a lattice isomorphism, so it preserves joins. LetD be a congruence class of θ/ψ ∨ ϱWF/ψ which

is a subalgebra of F/ψ and a1/ψ, . . . , an/ψ ∈ D. By Lemma 2.16, ϱWF/ψ = (ψ ∨ ϱWF )/ψ. Thus

θ/ψ ∨ ϱWF/ψ = θ/ψ ∨ (ψ ∨ ϱWF )/ψ = (θ ∨ ψ ∨ ϱWF )/ψ = (θ ∨ ϱWF )/ψ.

By Lemma 2.10, the congruence class
⋃
D of θ ∨ ϱWF is a subalgebra of F . By PF(n), there

exist a′1, . . . , a′n ∈
⋃
D that lie in the same congruence class of ϱWF which is a subalgebra of F ,

and are such that (ai, a′i) ∈ θ for each 1 ≤ i ≤ n. Consequently a′1/ψ, . . . , a′n/ψ ∈ D lie in the

same congruence class of (ψ ∨ ϱWF )/ψ = ϱWF/ψ and (ai/ψ, a
′
i/ψ) ∈ θ/ψ for each 1 ≤ i ≤ n. It

follows that PH(V◦W)(n) holds.

Now let F ⊆ K,K′ ⊆ H(V ◦W). Then PK(n) implies PF(n), PF(n) implies PH(V◦W)(n),

and PH(V◦W)(n) implies PK′(n). Hence PK(n) implies PK′(n). By the same argument PK′(n)

implies PK(n).

The proofs of the following two results show the usefulness of the notion of term idempo-

tence in the context of this chapter. Recall that the variety A of all algebras of a given type is

the only term idempotent variety that has no term idempotents.

Proposition 8.3. Let V and W be varieties. If W is term idempotent and distinct from A, then

the condition P (1) holds.
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Proof. Let A ∈ V ◦W , θ be a congruence of A, D be a congruence class of θ ∨ϱWA which is a

subalgebra of A, and a ∈ D. Assume that there is no a′ ∈ a/θ such that the congruence class

a′/ϱWA is a subalgebra of A. By Theorem 7.3, for every b ∈ a/θ, one has b/ϱWA = {b} ⊆ a/θ.

Hence a/θ = a/(θ ∨ϱWA ) = D.

Let t(x) be a term idempotent of W . Since D = a/θ is a subalgebra of A, it contains the

value t(a). By Lemma 3.3, the congruence class t(a)/ϱWA is a subalgebra of A, which is a con-

tradiction. It follows that P (1) holds.

Proposition 8.4. Let V andW be varieties, and letW be term idempotent and distinct fromA.

The condition P (2) holds iff H(V ◦W) has simple W–replica congruences.

Proof. We apply Proposition 7.10 to varieties W ⊆ H(V ◦W). The condition (i), which says

thatH(V ◦W) has simpleW–replica congruences, is equivalent to the condition (ii), which says

that for every A ∈ H(V ◦W) and any congruence θ of A, one has θ ∨ϱWA = θ ◦ ϱWA ◦ θ.

Assume that P (2) holds. By Proposition 8.2, PH(V◦W)(2) also holds. Let A ∈ H(V ◦ W)

and θ be a congruence of A. By Theorem 7.3, congruence classes of ϱWA/θ = (θ ∨ ϱWA )/θ are

subalgebras of A/θ or singletons. Thus, by Lemma 2.10, congruence classes of θ ∨ ϱWA are

subalgebras of A or congruence classes of θ. Let (a, b) ∈ θ ∨ ϱWA . Then a and b lie in some

congruence class D of θ ∨ ϱWA . If D is a subalgebra, then by PH(V◦W)(2), there are a′, b′ ∈ D

such that (a′, b′) ∈ ϱWA and (a, a′), (b, b′) ∈ θ. Hence (a, b) ∈ θ ◦ ϱWA ◦ θ. Otherwise, D is a

congruence class of θ, so (a, b) ∈ θ ⊆ θ ◦ ϱWA ◦ θ. It follows that θ ∨ϱWA = θ ◦ ϱWA ◦ θ.

Assume that for each A ∈ H(V ◦W) and any congruence θ of A, θ ∨ϱWA = θ ◦ ϱWA ◦ θ. Let

A ∈ V ◦W , θ be a congruence of A, D be a congruence class of θ ∨ϱWA which is a subalgebra

of A, and a, b ∈ D. Then (a, b) ∈ θ ◦ ϱWA ◦ θ, which implies that there are c, d ∈ D such that

a θ c ϱWA d θ b. By Theorem 7.3, the congruence class c/ϱWA = d/ϱWA is a subalgebra of A or

a singleton. In the former case P (2) holds with a′ = c and b′ = d. In the latter case c = d, so

(a, b) ∈ θ. By Proposition 8.3, P (1) holds. Thus there exists e ∈ D such that (a, e) ∈ θ and

e/ϱWA is a subalgebra. Since also (b, e) ∈ θ, P (2) holds with a′ = b′ = e.
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Wewill now use the method provided by Proposition 8.1 to prove a new sufficient condition

for the Maltsev product V ◦W of a variety V and a term idempotent variety W to be a variety.

Note that by Proposition 8.4, any such sufficient condition which is provable using that method

must imply that H(V ◦W) has simpleW–replica congruences.

Lemma 8.5. Let W be a variety, u and v be terms, and t(x) be an at most unary term. If

W |= u(t(x1), . . . , t(xn)) = v(t(x1), . . . , t(xn)), (8.1)

then for every at most unary term idempotent p(x) of W ,

W |= u(p(x1), . . . , p(xn)) = v(p(x1), . . . , p(xn)). (8.2)

Proof. Let p(x) be a term idempotent of W . The identity (8.1) has the consequence

W |= u(t(p(x1)), . . . , t(p(xn))) = v(t(p(x1)), . . . , t(p(xn))). (8.3)

If t is unary, then by Proposition 3.7(3), t(p(x)) is W–equivalent to p(x). If t is nullary, then

t(p(x)) coincides with the constant term t. Thus, by Proposition 3.11, t(p(x)) isW–equivalent

to p(x). Therefore (8.3) implies (8.2).

Theorem 8.6. Let V and W be varieties, and let W be term idempotent. If there exist terms

p(x, y, z), q(x, y, z), and t(x) such that

(a) V |= p(x, y, y) = x, q(x, x, y) = y,

(b) W |= p(t(x), t(x), t(y)) = q(t(x), t(y), t(y)),

then the Maltsev product V ◦W is a variety.

Proof. For any variety V , the Maltsev product V ◦ A coincides with A, so it is a variety. We

may thus assume thatW is distinct from A. By Lemma 8.5, we may assume that t(x) is a term

idempotent of W .

By Proposition 8.3, P (1) holds. By Proposition 7.12 and Proposition 8.4, P (2) holds. Let

n ≥ 3 and assume that P (n − 1) holds. We will show that P (n) also holds. Let A ∈ V ◦W ,

θ be a congruence of A, D be a congruence class of θ ∨ϱWA which is a subalgebra of A, and
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a1, . . . , an ∈ D. By P (n − 1), there are a congruence class E of ϱWA which is a subalgebra

of A and elements b1, . . . , bn−1 ∈ E such that (ai, bi) ∈ θ for each 1 ≤ i < n. By P (2), there

are a congruence class E ′ of ϱWA which is a subalgebra of A and elements c, d ∈ E ′ such that

(b1, c) ∈ θ and (an, d) ∈ θ. By Theorem 2.25,E andE ′ belong to V , so they satisfy the identities

of (a). Furthermore, A/ϱWA satisfies the identity of (b). It follows that for every 1 ≤ i < n,

ai θ bi = p(bi, b1, b1) θ p(bi, b1, c) ϱ
W
A p(b1, b1, d) ϱ

W
A p(t(b1), t(b1), t(d))

ϱWA q(t(b1), t(d), t(d)) ϱ
W
A q(b1, d, d) ϱ

W
A q(b1, c, d) θ q(c, c, d) = d θ an.

Hence if we define a′i = p(bi, b1, c) for each 1 ≤ i < n and a′n = q(b1, c, d), then

ai θ a
′
i ϱ

W
A p(t(b1), t(b1), t(d)), ∀1 ≤ i ≤ n.

Therefore elements a′1, . . . , a′n lie in the congruence class p(t(b1), t(b1), t(d))/ϱWA and are such

that (ai, a′i) ∈ θ for each 1 ≤ i ≤ n. By Proposition 6.1, the set of term idempotents of W is a

sink of T (ω). Since the term t(x) is a term idempotent of W , the term p(t(x), t(x), t(y)) is also

a term idempotent of W . Thus by Proposition 3.3, the congruence class p(t(b1), t(b1), t(d))/ϱWA

is a subalgebra of A. Consequently P (n) holds. By Proposition 8.1, V ◦W is a variety.

Let V andW be varieties that satisfy the sufficient condition presented in Theorem 8.6. By

Theorem 4.2, the variety V ◦W is defined by the set of identities ΣW for any equational base Σ

for V . By Theorem 7.3, the W–replica congruence ϱWA of an algebra A ∈ V ◦W partitions the

universe of A into congruence classes that are V–algebras or singletons. By Proposition 7.12,

ϱWA =
{
(u(a), v(a)) | W |= u(x) = v(x), a ∈ Ax

}
.

For any variety U that contains both V andW , the Maltsev U–product V ◦U W coincides with

the intersection of the varieties V ◦W and U . Hence V ◦U W is a variety. It is defined relative

to U by ΣW . For any subvarieties V0 ⊆ V and W0 ⊆ W , the varieties V0 and W▽
0 also satisfy

the sufficient condition, so the Maltsev product V0 ◦W▽
0 is a variety.

Theorem 8.6 is a considerable extension of [19, Thm. 4.1]. The new proof strategy employed

in this work allowed us to obtain a weaker sufficient condition. We will finish this chapter with

comments on some aspects of the new sufficient condition.
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The use of the term t(x) in the condition (b) may be interpreted as a requirement that for any

algebra A ∈ W , the identity

p(x, x, y) = q(x, y, y) (8.4)

is satisfied by the elements of the set S = {t(a) | a ∈ A}. The set S contains all idempotents

of A. If t(x) is a term idempotent of W , then S is precisely the set I(A) of idempotents of A.

By Proposition 6.1, I(A) is a subalgebra of A. We thus only require that the subalgebras I(A)

of algebras A ∈ W satisfy the identity (8.4).

The conditions (a) and (b) of Theorem 8.6 resemble the Maltsev condition for a variety to be

congruence 3–permutable. By Theorem 2.12, a variety U is congruence 3–permutable iff there

exist terms p(x, y, z) and q(x, y, z) such that U satisfies the identities

p(x, y, y) = x, q(x, x, y) = y, p(x, x, y) = q(x, y, y). (8.5)

The condition (a) requires V to satisfy the first two of identities (8.5) and the condition (b)

requires W to satisfy a weaker version of the last of identities (8.5). This similarity may be

explained by the following observation. The identities (8.5) entail that for any congruences θ

and ψ of an algebra A ∈ U , one has θ ∨ ψ = θ ◦ ψ ◦ θ. On the other hand by Propositions 7.10

and 7.12, the conditions (a) and (b) entail that for any congruence θ of an algebra A ∈ V ◦W ,

one has θ ∨ ϱWA = θ ◦ ϱWA ◦ θ.
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9 Consequences and examples

We will derive additional sufficient conditions as consequences of Theorem 8.6 and we will

illustrate their application with examples. In the following two results, the requirements for

varieties V andW are separated, so these varieties may be chosen independently.

Theorem 9.1. If V is a congruence permutable variety and W is a term idempotent variety,

then the Maltsev product V ◦W is a variety.

Proof. Let p(x, y, z) be a Maltsev term for V . Define terms q(x, y, z) and t(x) as p(x, x, z) and

x respectively. For such terms p, q, and t, the conditions of Theorem 8.6 take the following

form:

(a) V |= p(x, y, y) = x, p(x, x, y) = y,

(b) W |= p(x, x, y) = p(x, x, y).

The identities of (a) are the identities that define a Maltsev term, so (a) is satisfied. The identity

of (b) is trivial, so (b) is satisfied.

Example 9.2. [19, Ex. 5.8] The variety G of groups of the type { · ,−1 } is defined by the fol-

lowing identities:

(1) (x · y) · z = x · (y · z),

(2) x · x−1 = y · y−1,

(3) x · (x · x−1) = x = (x · x−1) · x.

This variety is equivalent to the usual variety of groups of the type { · ,−1 , e}. We will consider

the Maltsev product of G and the variety of lattices L. We must first present each of them as an

equivalent variety of the type Ω = {+, · ,−1 }. The variety G of groups of the type Ω is defined

by the identities that define G and the identity x+ y = x · y. The variety L of lattices of the

type Ω is defined by the identities that define L and the identity x−1 = x. Since G is congruence

permutable and L is idempotent, by Theorem 9.1, the Maltsev product G ◦ L is a variety. Both

G and L are strongly irregular and L is idempotent, so by Proposition 4.15, G ◦ L is a strongly

irregular variety. Furthermore, for every pair of subvarieties G ′ ⊆ G and L′ ⊆ L, their Maltsev
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product G ′ ◦ L′ is also a variety. E.g. G ′ may be the variety of Abelian groups and L′ may be the

variety of distributive lattices.

Theorem 9.3. [19, Thm. 6.10] If V is a variety and W is a polarized term idempotent variety,

then the Maltsev product V ◦W is a variety.

Proof. Let t(x) be a polar term of W . Define terms p(x, y, z) and q(x, y, z) as x and z respec-

tively. Then the conditions of Theorem 8.6 take the following form:

(a) V |= x = x, y = y,

(b) W |= t(x) = t(y).

The identities of (a) are trivial, so (a) is satisfied. Since t(x) is constant inW , (b) is satisfied.

Example 9.4. The variety Cs of all constant semigroups is polarized and term idempotent. By

Theorem 9.3, if V is a variety of magmas, then the Maltsev product V ◦ Cs is a variety. E.g.

Lz ◦ Cs is a variety.

The following result extends Theorem 1.5.

Theorem 9.5. Let V and W be varieties, and let W be term idempotent. If the join V ∨W is

congruence 3–permutable, then the Maltsev product V ◦W is a variety.

Proof. By Theorem 2.12, there are terms p(x, y, z) and q(x, y, z) such that V ∨W satisfies the

identities

x = p(x, y, y), p(x, x, y) = q(x, y, y), q(x, x, y) = y. (9.1)

Since V andW also satisfy these identities, the conditions (a) and (b) of Theorem 8.6 are satis-

fied.

Corollary 9.6. If a varietyV is term idempotent and congruence 3–permutable, then theMaltsev

product V ◦ V is a variety.

Corollary 9.7. If U is an idempotent and congruence 3–permutable variety, then for every pair

of subvarieties V ,W ⊆ U , the Maltsev product V ◦W is a variety.
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Maltsev was interested in families of subclasses of a class K of algebras, that are closed

under the Maltsev K–product. By Theorem 1.3, the class of subvarieties of a congruence per-

mutable and polarized variety U is closed under theMaltsev U–product. The following corollary

provides another example of a variety U with such a property.

Corollary 9.8. If U is an idempotent and congruence 3–permutable variety, then the class of

subvarieties of U is closed under the Maltsev U–product.

Example 9.9. Let P3 denote the variety of the type {p, q} with two ternary basic operation

symbols that is defined by the identities (9.1). This is the most general congruence 3–permutable

variety in the sense that a variety V is congruence 3–permutable iff there is an interpretation of

P3 in V . The variety P3 is also idempotent, so by Corollary 9.7, the Maltsev product of any pair

of subvarieties of P3 is a variety. In particular P3 ◦ P3 is a variety.

The special case of Theorem 9.1 whenW is an idempotent variety already follows from the

previous version of the sufficient condition presented in [19, Thm. 4.1]. However neither the

full version of Theorem 9.1 nor Theorems 9.3 and 9.5 follow from [19, Thm. 4.1].

We will now investigate the consequences of Theorem 8.6 for varieties V and W such that

V ∧W is trivial. We previously observed that there is the following special case of the condi-

tions (a) and (b).

Theorem 9.10. [19, Cor. 5.2] Let V andW be varieties, and letW be term idempotent. If there

exist terms p(x, y) and q(x, y) such that

(a) V |= p(x, y) = x, q(x, y) = y,

(b) W |= p(x, y) = q(x, y),

then the Maltsev product V ◦W is a variety.

The assumptions of Theorem 9.10 may be rephrased as requiring the existence of W–

equivalent terms p(x, y) and q(x, y) that are V–equivalent to x and y respectively. The exis-

tence of such terms implies the equivalence of the terms x and y in the meet V ∧W . This in

turn implies that V ∧W is trivial. If V and W are varieties that satisfy these assumptions, then
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Theorem 7.14 provides a description of theW–replica congruence of any algebra in the variety

V ◦W . The following proposition shows that for a variety V and a term idempotent varietyW

such that V ∧W is trivial, Theorem 9.10 presents the most general sufficient condition for the

Maltsev product V ◦W to be a variety which is provable using the method provided by Propo-

sition 8.1.

Proposition 9.11. Let V and W be varieties such that V ∧W is trivial, and let W be term

idempotent and distinct from A. The following conditions are equivalent.

(i) P (n) holds for every n ≥ 1.

(ii) P (2) holds.

(iii) H(V ◦W) has simple W–replica congruences.

(iv) There exist terms p(x, y) and q(x, y) such that

(a) V |= p(x, y) = x, q(x, y) = y,

(b) W |= p(x, y) = q(x, y).

Proof. Clearly (i) implies (ii). By Proposition 8.4, (ii) and (iii) are equivalent, and by Proposi-

tion 7.13, (iii) and (iv) are equivalent. The conditions (a) and (b) of (iv) are a special case of the

conditions (a) and (b) of Theorem 8.6, so (iv) implies (i).

Example 9.12. A group G is Boolean if every element of G is its own inverse. The variety Bg

of all Boolean groups can be considered as the subvariety of Sg defined relative to Sg by the

identities

x · (y · y) = x = (y · y) · x.

Let p(x, y) be the term x · (y · y) and q(x, y) be the term (x · x) · y. In the variety Bg, p and q

are equivalent to x and y respectively. In the term idempotent variety Rs of Example 6.3, p

and q are equivalent. Thus, by Theorem 9.10, Bg ◦ Rs is a variety. The variety Bg is strongly

irregular and the variety Rs is irregular, but not strongly irregular, so by Corollary 4.14, the

variety Bg ◦ Rs is irregular.

Example 9.13. Consider the variety Rs of the type {· ,+} defined by the identities defining
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Rs and the identity x+ y = x · y. This variety is equivalent to Rs. Let p(x, y) be the term

x+ (x · y) and q(x, y) be the term (x · y) + y. These terms areRs–equivalent. In the variety L

of lattices, p and q are equivalent to x and y respectively (due to the absorption laws). Thus, by

Theorem 9.10, L ◦ Rs is a variety.

Varieties V and W are independent if there exists a term p(x, y) that is V–equivalent to x

and W–equivalent to y. Such a term is called a decomposition term. For independent varieties

V andW , the meet V ∧W is the trivial variety and the join V ∨W consists of all algebras that

are isomorphic to products A× B for A ∈ V and B ∈ W . See [21, Sec. 3.5] for the discussion

of independence of varieties.

Corollary 9.14. [19, Cor. 5.5] If varieties V andW are independent andW is term idempotent,

then the Maltsev product V ◦W is a variety.

Proof. Let p(x, y) be a decomposition term for V and W . Define a term q(x, y) as y. Then the

conditions of Theorem 9.10 take the following form:

(a) V |= p(x, y) = x, y = y,

(b) W |= p(x, y) = y.

Since p(x, y) is a decomposition term for V andW , (a) and (b) are satisfied.

Example 9.15. [19, Ex. 5.6] The varieties Lz and Rz are independent with a decomposition

term x · y, so by Corollary 9.14, Lz ◦ Rz is a variety. The join Lz ∨ Rz is the variety Rb (see

[12, p. 120]).

We will say that a term p(x, y) is symmetric in a variety V if V |= p(x, y) = p(y, x).

Corollary 9.16. Let V andW be varieties, and letW be term idempotent. If there exists a term

p(x, y) that is symmetric in W and equivalent to x in V , then the Maltsev product V ◦ W is a

variety.

Proof. Let p(x, y) be a term as in the statement of this corollary. Define a term q(x, y) as p(y, x).

For such terms p and q, the conditions (a) and (b) of Theorem 9.10 are satisfied.
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Example 9.17. Recall from Example 6.16 that Com is the variety of commutative magmas and

that Com▽ is defined relative to Com by the identity (x · y) · (x · y) = x · y. Since the term x · y

is symmetric in Com and it is equivalent to x in Lz, by Corollary 9.16, Lz ◦ Com▽ is a variety.

By Corollary 6.19, this variety is term idempotent.

Example 9.18. Let CI be the variety of commutative and idempotent magmas. It is defined by

the identities x · y = y · x and x · x = x. Let us consider an equivalent variety CI of the type

{ · ,−1 } defined by the identities that define CI and the identity x−1 = x. The term x · (y · y−1),

which is equivalent to x in the variety G of groups of the type { · ,−1 } (see Example 9.2), is

symmetric in CI , because

CI |= x · (y · y−1) = x · (y · y) = x · y = y · x = y · (x · x) = y · (x · x−1).

Thus, by Corollary 9.16, G ◦ CI is a variety. The same is true for any subvariety of CI . The

variety Sq of Steiner quasigroups is defined relative to CI by the identity x · (x · y) = y. Hence

G ◦ Sq is a variety.

Theorem 9.19. [3, Thm. 6.3] If V is a strongly irregular variety, then the Maltsev product

V ◦ S is a variety.

Proof. Let t(x, y) = x be a strongly irregular identity true in V . Since the term t(x, y) contains

both variables x and y, the identity t(x, y) = t(y, x) is regular, and thus it is true in S . By

Corollary 9.16, V ◦ S is a variety.

Let V be a strongly irregular variety. Since S is regular, by Proposition 4.13, the variety

V ◦ S is regular. Example 4.5 provides an equational base for V ◦ S , which coincides with the

equational base provided in [3]. As shown in Example 7.15, for any A ∈ V ◦ S , the S–replica

congruence of A is given by

ϱSA = {(a, b) ∈ A2 | t(a, b) = a},

where t(x, y) = x is a strongly irregular identity satisfied in V . If the type of V is plural, then

algebras in V ◦ S are called semilattice sums of V–algebras (see [20]).
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The following counterexample shows that in Theorem 9.19, the assumption thatV is strongly

irregular cannot be replaced by the assumption that V is irregular. This answers in the negative

the question posed in [3, Prob. 6.5].

Counterexample 9.20. [19, Ex. 5.9] Recall that the variety Cs of constant semigroups is irreg-

ular, but not strongly irregular. We will show that Cs ◦ S fails to be a variety by providing an

example of an algebra A ∈ Cs ◦ S that has a quotient A/θ /∈ Cs ◦ S . Let A be defined by the

following table
· a e b f
a e e b f
e e e f f
b b f f f
f f f f f

The S–replica congruence of A has two congruence classes {a, e} and {b, f} that are constant

semigroups with constant values e and f respectively, so A ∈ Cs ◦ S . The congruence θ of A

with congruence classes {a}, {b}, and E = {e, f} yields the quotient A/θ with the following

table
· {a} {b} E

{a} E {b} E
{b} {b} E E
E E E E

The S–replica congruence of A/θ is the maximum congruence, i.e. the whole universe A/θ

forms a congruence class. However A/θ is not a constant semigroup, so A/θ /∈ Cs ◦ S .

One might conjecture that for a variety V and a term idempotent varietyW such that V ∧W

is trivial, the sufficient condition for V ◦W to be a variety provided by Theorem 9.10 is also a

necessary condition. If this was true, then the proposition that V ◦ S is a variety if V is irregular,

which we refuted by a counterexample, could be refuted on account of the following result.

Proposition 9.21. Let V andW be nontrivial varieties of a type that contains basic operations

of arity at least two. If V is not strongly irregular andW is regular, then there do not exist terms

p(x, y) and q(x, y) such that

(a) V |= p(x, y) = x, q(x, y) = y,

(b) W |= p(x, y) = q(x, y).
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Proof. Assume that there exist terms p and q such that (a) and (b) hold. Then var(p) = {x},

because otherwise it would be possible to derive a strongly irregular identity from V |= p = x.

Analogously, var(q) = {y}. HenceW 6|= p = q, which contradicts (b).

If the aforementioned conjecture is true, then for any nontrivial varieties V andW of a type

that contains basic operations of arity at least two, such that V is not strongly irregular, W is

regular and term idempotent, and V ∧W is trivial, the Maltsev product V ◦W is not a variety.

An example of such varieties whose Maltsev product is nonetheless a variety would thus be a

counterexample to the conjecture and the nonexistence of such examples would point towards

its verity.

For any plural type Ω without symbols of basic operations of arity greater than two, let us

define a variety BΩ by the following identities

(1) the associative and the idempotent law for a chosen binary · ∈ Ω,

(2) x • y = x ⋆ y for all binary •, ⋆ ∈ Ω,

(3) f(x) = x for all unary f ∈ Ω.

Then (1) makes · a band operation, (2) makes all binary basic operations equal to ·, so in par-

ticular it makes no difference which basic operation was chosen in (1), and (3) makes all unary

basic operations equal to the identity operation. The variety BΩ is equivalent to the variety of

bands B. Algebras in BΩ may be called Ω–bands. We will denote BΩ simply by B.

Corollary 9.22. [18, Thm. 4.4] Let V be a variety of a plural type Ω without symbols of basic

operations of arity greater than two. If there exist binary terms p(x, y) and q(x, y) such that

the first variable of both terms is the same and the last variable of both terms is the same, and

they are V–equivalent to x and y respectively, then for any varietyW ⊆ B, the Maltsev product

V ◦W is a variety.

Proof. The free band over generators x and y consists of the equivalence classes represented by

terms x, y, xy, yx, xyx, and yxy. Each of the last 4 classes consists of all terms that contain both

variables x and y, and have the same first variable and the same last variable as the representative
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term. Since the binary terms p and q contain both variables x and y and have the same first and

the same last variable, they belong to the same class. Hence they are equivalent in B. Therefore,

by Theorem 9.10, V ◦W is a variety.

Example 9.23. [18, Ex. 4.3] In the variety of groups G, consider the binary terms x · (y−1 · y)

and (x · x−1) · y. They have the same first variable and the same last variable, and G satisfies

the identities

x · (y−1 · y) = x, (x · x−1) · y = y. (9.2)

By Corollary 9.22, G ◦ B is a variety. Furthermore, any variety that has the group basic opera-

tions satisfies the identities (9.2). E.g. for the varietyR of all rings (defined without the symbols

of constants), the Maltsev productR ◦ B is also a variety.

Example 9.24. [18, Ex. 4.1] In the variety of lattices L, the terms x + (x · y) and (x · y) + y

satisfy the conditions of Corollary 9.22, so L ◦ B is a variety. The same is true for any variety

that has the lattice basic operations, e.g. the variety of Boolean algebras.

Example 9.25. [18, Ex. 4.2] In the variety of quasigroupsQ, the terms (x · y)/y and x\(x · y)

satisfy the conditions of Corollary 9.22, so Q ◦ B is a variety.

By Corollary 6.19, adding an assumption that V is idempotent to Theorem 8.6 or to one of

its consequences presented in this chapter, results in a stronger conclusion that V ◦W is a term

idempotent variety. New examples of term idempotent varieties may be constructed this way.

E.g. the following results are corollaries of Theorems 9.1 and 9.3 respectively.

Corollary 9.26. If V is an idempotent congruence permutable variety and W is a term idem-

potent variety, then the Maltsev product V ◦W is a term idempotent variety.

Corollary 9.27. If V is an idempotent variety and W is a polarized term idempotent variety,

then the Maltsev product V ◦W is a term idempotent variety.

Example 9.28. The variety S of Ω–semilattices is idempotent and the variety C of constant

algebras is polarized and term idempotent. Hence S ◦ C is a term idempotent variety.
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Both Corollary 9.26 and Theorem 9.3 can be applied iteratively, which leads to the following

results about repeated Maltsev products.

Corollary 9.29. If V1, . . . ,Vn are idempotent congruence permutable varieties andW is a term

idempotent variety, then the repeated Maltsev product Vn ◦ (· · · ◦ (V3 ◦ (V2 ◦ (V1 ◦W))) · · · ) is

a term idempotent variety.

Corollary 9.30. If V is a variety andW1, . . . ,Wn are polarized term idempotent varieties, then

the repeated Maltsev product (· · · (((V ◦W1) ◦W2) ◦W3) ◦ · · · ) ◦Wn is a variety.

For a variety V and a positive integer n, let us define the nth right–power V n of V and the

nth left–power nV of V as n–fold repeated Maltsev products of the following forms

V n = (· · · (((V ◦ V) ◦ V) ◦ V) ◦ · · · ) ◦ V ,

nV = V ◦ (· · · ◦ (V ◦ (V ◦ (V ◦ V))) · · · ).

Corollaries 9.29 and 9.30 yield the following results.

Corollary 9.31. If V is an idempotent congruence permutable variety, then every left–power

of V is an idempotent variety.

Corollary 9.32. If V is a polarized term idempotent variety, then every right–power of V is a

variety.

We conclude this work with a brief discussion of possible directions of further research. The

following are some of the open questions concerning our results.

Question 9.33. What is the most general sufficient condition for a Maltsev product of two va-

rieties to be a variety which is provable using the method provided by Proposition 8.1?

Question 9.34. For a variety V and a term idempotent variety W such that V ∧W is trivial, is

the sufficient condition for theMaltsev product V ◦W to be a variety presented in Theorem 9.10

also a necessary condition?
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If varieties V andW satisfy the sufficient condition of Theorem 8.6, then for any variety U

that contains both V and W , the Maltsev U–product V ◦U W is a variety. This yields a suffi-

cient condition for a Maltsev U–product of two varieties to be a variety. However this sufficient

condition lacks any requirements on the variety U . It might prove to be fruitful to research the

possibility of finding a common generalization of Theorem 8.6 and Theorem 1.4.
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